Gruppentheoretische Aspekte der Quadratur und Kubatur

  • Walter Schempp
Part of the ISNM 57: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 57)


The notion of t-design is well established in combinatorics. Replacing the “discrete” sphere by the compact Euclidean unit sphere Sn-1 of IRn(n≧2) and the action of the symmetric group by the action of the special orthogonal group SO(n,IR), the notion of spherical t-design in IRn emerges. Since spherical t-designs allow to measure certain regularity properties of finite subsets X of Sn-1, this notion has computational besides theoretical significance. In particular, spherical t-designs are useful for the explicit construction of cubature formulae for surface integrals over Sn-1 by averaging over X (Section 1). The purpose of the present note is to deal mainly with the one-dimensional case (n=1). It will be shown that in this case the action of the real Heisenberg group (Section 2) gives rise to a trapezoidal rule for improper integrals. The error of this quadrature formula will be represented by a complex contour integral with noncompact integration path (Section 3). Finally, a guide to various different applications of our geometric and analytic methods is provided (Section 4).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auslander, L., Tolimieri, R.: Is computing with the finite Fourier transform pure or applied mathematics? Bull. (New Series) Amer. Math. Soc. 1, 847–897 (1979)CrossRefGoogle Scholar
  2. 2.
    Bauer, F.L., Stetter, H.J.: Zur numerischen Fourier-Transformation. Numer. Math. 1, 208–220 (1959)CrossRefGoogle Scholar
  3. 3.
    Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geometriae Dedicata 6, 363–388 (1977)CrossRefGoogle Scholar
  4. 4.
    Gautschi, W.: Attenuation factors in practical Fourier analysis. Numer. Math. 18, 373–400 (1972)CrossRefGoogle Scholar
  5. 5.
    Goethals, J.M., Seidel, J.J.: Spherical designs. In: Relations between combinatorics and other parts of mathematics. Proc. Symposia Pure Mathematics, Vol. 34, pp. 255–272. American Mathematical Society, Providence, Rhode Island, 1979CrossRefGoogle Scholar
  6. 6.
    Henrici, P.: Fast Fourier methods in computational complex analysis. SIAM Rev. 21, 481–527 (1979)CrossRefGoogle Scholar
  7. 7.
    Kress, R.: Interpolation auf einem unendlichen Intervall. Computing 6, 274–288 (1970)CrossRefGoogle Scholar
  8. 8.
    Lüke, H.D.: Signalübertragung. 2. Aufl. Springer-Verlag, Berlin-Heidelberg-New York, 1979CrossRefGoogle Scholar
  9. 9.
    Martensen, E.: Zur numerischen Auswertung uneigentlicher Integrale. Z. angew. Math. Mech. 48, T 83–T 85 (1968)Google Scholar
  10. 10.
    v. Neumann, J.: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570–578 (1931)CrossRefGoogle Scholar
  11. 11.
    Schempp, W.: Cardinal exponential splines and Laplace transform. J. Approx. Theory 31, 261–271 (1981)CrossRefGoogle Scholar
  12. 12.
    Schempp, W.: A contour integral representation of Euler-Frobenius polynomials. J. Approx. Theory 32, 272–278 (1981)CrossRefGoogle Scholar
  13. 13.
    Schempp, W.: Cardinal logarithmic splines and Mellin transform. J. Approx. Theory 31, 279–287 (1981)CrossRefGoogle Scholar
  14. 14.
    Schempp, W.: On cardinal exponential splines of higher order. J. Approx. Theory 31, 288–297 (1981)CrossRefGoogle Scholar
  15. 15.
    Schempp, W.: Approximation und Transformationsmethoden III. In: Functional analysis and approximation. ISNM, Vol. 60, pp. 409–420. Birkhäuser Verlag, Basel-Boston-Stuttgart, 1981Google Scholar
  16. 16.
    Schempp, W.: Periodic splines and nilpotent harmonic analysis. C.R. Math. Rep. Acad. Sci. Canada 3, 69–74 (1981)Google Scholar
  17. 17.
    Schempp, W.: Cardinal splines and nilpotent harmonic analysis. C.R. Math. Rep. Acad. Sci. Canada 3, 197–202 (1981)Google Scholar
  18. 18.
    Schempp, W.: Attenuation factors and nilpotent harmonic analysis. Resultate Math. (in press)Google Scholar
  19. 19.
    Schempp, W.: Identities and inequalities via symmetrization. In: General inequalities 3. ISNM Series. Birkhäuser Verlag, Basel-Boston-Stuttgart (in press)Google Scholar
  20. 20.
    Schempp, W.: Complex contour integral representation of cardinal spline functions. With a preface by I.J. Schoenberg. Contemporary Mathematics Series. American Mathematical Society, Providence, Rhode Island, 1981Google Scholar
  21. 21.
    Schempp, W.: Harmonic analysis on Heisenberg groups with applications to spline functions. Research Notes in Mathematics Series. Pitman, San Francisco-London-Melbourne (in preparation)Google Scholar
  22. 22.
    Schempp, W.: Cubature, quadrature, and group actions. C.R. Math. Rep. Acad. Sci. Canada 3 (6), 1981Google Scholar
  23. 23.
    Schempp, W.: Gruppentheoretische Aspekte der digitalen Signalübertragung und der kardinalen Interpolationssplines. Math. Meth. in the Appl. Sci. (to appear)Google Scholar
  24. 24.
    Schempp, W., Dreseler, B.: Einführung in die harmonische Analyse. Reihe Mathematische Leitfäden. B.G. Teubner, Stuttgart, 1980CrossRefGoogle Scholar
  25. 25.
    Schoenberg, I.J.: Cardinal spline interpolation. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, Pennsylvania, 1973CrossRefGoogle Scholar
  26. 26.
    Schwierz, G., Härer, Vf., Wiesent, K.: Sampling and discretization problems in X-ray-CT. In: Mathematical aspects of computerized tomography. Lecture Notes in Medical Informatics, Vol. 8, pp. 292–309. Springer-Verlag, Berlin-Heidelberg-New York, 1981CrossRefGoogle Scholar
  27. 27.
    Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 165–224 (1981)CrossRefGoogle Scholar
  28. 28.
    Stone, M. : Linear transformations in Hilbert space, III. Operational methods and group theory. Proc. Nat. Acad. Sci. U.S.A. 16, 172–175 (1930)CrossRefGoogle Scholar
  29. 29.
    Titchmarsh, E.C.: Introduction to the theory of Fourier integrals. 2nd ed. Oxford at the Clarendon Press, 1975Google Scholar
  30. 30.
    Young, R.M.: An introduction to nonharmonic Fourier series. Pure and Applied Mathematics Series. Academic Press, New York-London-Toronto-Sydney-San Francisco, 1980Google Scholar

Copyright information

© Springer Basel AG 1982

Authors and Affiliations

  • Walter Schempp

There are no affiliations available

Personalised recommendations