Gaussian Quadrature Applied to Eigenvalue Approximations

  • E. Schäfer
Part of the ISNM 57: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 57)


We consider the eigenvalue problem
$$Kx = \lambda x,\left( {Kx} \right)\left( s \right) = \int\limits_I {k\left( {s,t} \right)x\left( t \right)dt,I = \left[ {0,1} \right]} $$
, with K : X → X, X = L2 (I), a compact integral operator. In order to obtain approximations xh resp. yh for elements of \(N\left( {K,\lambda } \right): = \left\{ {z \in X\left| {\left( {K - \lambda Id} \right)z = 0} \right.} \right\}\) resp.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chatelin, F.: Sur les bornes d’erreur a posteriori pour les éléments propres d’operateurs linéaires. Numer. Math. 32, 233–246 (1979).CrossRefGoogle Scholar
  2. [2]
    Hämmerlin, G., L.L. Schumaker: Error bounds for the approximation of Green’s kernels by splines. Numer. Math. 33, 17–22 (1979).CrossRefGoogle Scholar
  3. [3]
    Phillips, J.L., R.J. Hanson: Gauss quadrature rules with B-spline weight functions. Math. Computation 28, 666 + Microfiche supplement (1974).CrossRefGoogle Scholar
  4. [4]
    Schäfer, E.: Spectral approximation for compact integral operators by degenerate kernel methods. Numer. Funct. Anal. and Optimiz. 2, 43–63 (1980).CrossRefGoogle Scholar
  5. [5]
    Stroud, A.H., D. Secrest: Gaussian quadrature formulas. Englewood Cliffs, N.J., Prentice Hall, Inc. (1966).Google Scholar
  6. [6]
    Vainikko, G.M.: On the speed of convergence of approximate methods in the eigenvalue problem. U.S.S.R. Comput. Math. and Math. Phys. 7, 18–32 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1982

Authors and Affiliations

  • E. Schäfer

There are no affiliations available

Personalised recommendations