Boolean Constructed Cubature Formulas of Interpolatory Type

  • Gerd Neumann
Part of the ISNM 57: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 57)


Gordon [3], [4] introduced the Boolean method of multivariate interpolation. In the two-dimensional case Delvos-Posdorf [2] considered interpolation projectors which are Boolean sums of R tensor product Lagrange interpolation projectors. In this paper these R-th order projectors are used to construct cubature formulas of interpolatory type. For these cubature formulas we determine the degree of polynomial exactness. As an application the minimum point formulas of Morrow-Patterson [8] are constructed by Boolean methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chawla, M.M.: Error bounds for the Gauss-Chebyshev quadrature formula of the closed type. Math. Comp. 22, 889–891 (1968)CrossRefGoogle Scholar
  2. 2.
    Delvos, F.-J., Posdorf, H.: Boolesche zweidimensionale Lagrange-Interpolation. Computing 22, 311 – 323 (1979)CrossRefGoogle Scholar
  3. 3.
    Gordon, W.J.: Distributive lattices and approximation of multivariate functions. Proc. Symp. Approximations with Special Emphasis on Spline Functions. Ed.: I.J. Schoenberg. Academic Press, 223–277 (1969)Google Scholar
  4. 4.
    Gordon, W.J.: Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. Anal. 8, 158 – 177 (1971)CrossRefGoogle Scholar
  5. 5.
    Möller, H.M.: Polynomideale und Kubaturformeln. Dissertation, Universität Dortmund (1973)Google Scholar
  6. 6.
    Möller, H.M.: Kubaturformeln mit minimaler Knotenzahl. Numer. Math. 25, 185–200 (1976)CrossRefGoogle Scholar
  7. 7.
    Monegato, G.: A note on extended Gaussian quadrature rules. Math. Comp. 30, 812–817 (1976)Google Scholar
  8. 8.
    Morrow, C.R., Patterson, T.N.L.: Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal. 15, 953–976 (1978)CrossRefGoogle Scholar
  9. 9.
    Neumann, G.: Boolesche interpolatorische Kubatur. Preprint, Universität Siegen (1981)Google Scholar

Copyright information

© Springer Basel AG 1982

Authors and Affiliations

  • Gerd Neumann

There are no affiliations available

Personalised recommendations