Skip to main content

Construction of Known and New Cubature Formulas of Degree Five for Three-Dimensional Symmetric Regions, Using Orthogonal Polynomials

  • Chapter
Numerical Integration

Abstract

We are concerned with determining the nodes and weights in a cubature formula of the form

$$\iiint\limits_R {w(x,y,z)f(x,y,z)}dx{\kern 1pt} dy{\kern 1pt} dz \simeq \sum\limits_{i = 1}^N {{w_i}f({x_i},{y_i},{z_i})} $$
((1))

which is exact for all polynomials in x, y and z of degree ≤ 5 but not for all polynomials of degree 6. R is a region in the three-dimensional Euclidian space, assumed to be symmetric with respect to the three axes. The weight function w(x, y, z) will be assumed to be symmetric in x, y and z: w(x, y, z) = w(‒x, y, z) = w(x,‒y, z) = w(x, y,‒z) ≤ 0

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, W.S. Altran user’s manual. Murray Hill, New Jersey, Bell Laboratories 1973.

    Google Scholar 

  2. Ditkin, V.A. On certain approximate formulas for the calculation of triple integrals (in Russian), Dokl. Akad. Nauk. SSSR, 62, 1948, pp. 445–447.

    Google Scholar 

  3. Hammer, P.C., and Stroud, A.H. Numerical evaluation of multiple integrals II, Math. Tables Aids Comput., 12, 1958, pp. 272–280.

    Article  Google Scholar 

  4. Mustard, D., Lyness, J.N., and Blatt, J.M. Numerical quadrature in N dimensions, Computer J., 6, 1963–1964, pp. 75–87.

    Article  Google Scholar 

  5. Sadowsky, M. A formula for the approximate computation of a triple integral, Amer. Math. Monthly, 47, 1940, pp. 539–543.

    Article  Google Scholar 

  6. Stroud, A.H. Some fifth degree integration formulas for symmetric regions II, Numer. Math., 9, 1967, pp. 460–468.

    Article  Google Scholar 

  7. Stroud, A.H. Approximate calculation of multiole integrals, Englewood Cliffs, N.J. Prentice Hall, 1971.

    Google Scholar 

  8. Stroud, A.H., and Secrest, D. Approximate integration formulas for certain spherically symmetric regions, Math. Comput., 17, 1963, pp. 105–135.

    Article  Google Scholar 

  9. Tyler, G.W. Numerical integration of functions of several variables, Canad. J. Math., 5, 1953, pp. 393–412.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Basel AG

About this chapter

Cite this chapter

Haegemans, A. (1982). Construction of Known and New Cubature Formulas of Degree Five for Three-Dimensional Symmetric Regions, Using Orthogonal Polynomials. In: Hämmerlin, G. (eds) Numerical Integration. ISNM 57: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 57. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6308-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6308-7_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6309-4

  • Online ISBN: 978-3-0348-6308-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics