Advertisement

Programme zur Numerischen Behandlung von Verzweigungsproblemen bei Nichtlinearen Gleichungen und Differentialgleichungen

  • Rüdiger Seydel
Chapter
Part of the ISNM: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 54)

Abstract

Two programs are presented for the numerical handling of branching problems in nonlinear equations and ordinary differential equations. These routines provide information on the branch points when being used during a continuation procedure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Report der Carl-Cranz-Gesellschaft, 1971Google Scholar
  2. 2.
    Bulirsch, R., Oettli, W., Stoer, J. (Hrsg.): Optimization and optimal control. Proceedings of a conference held at Oberwolfach, 1974. Lecture Notes, Vol. 477. Berlin-Heidelberg- New York 1975Google Scholar
  3. 3.
    Bulirsch, R., Stoer, J., Deuflhard, P.: Numerical solution of nonlinear two-point boundary value problems I. erscheint in Numer. Math., Handbook Series ApproximationGoogle Scholar
  4. 4.
    Deuflhard, P.: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shootinq. Numer. Math. 22, 289–315 (1974)CrossRefGoogle Scholar
  5. 5.
    Deuflhard, P.: A relaxation strategy for the modified Newton method. in [2]Google Scholar
  6. 6.
    Seydel, R.: Numerische Berechnung von Verzweigungen bei gewöhnlichen Differentialgleichungen. Dissertation 1977, technische Universität München, Institut für MathematikGoogle Scholar
  7. 7.
    Seydel, R.: Numerical computation of branch points in ordinary differential equations. Numer. Math. 32, 51–68 (1979)CrossRefGoogle Scholar
  8. 8.
    Seydel, R.: Numerical computation of primary bifurcation points in ordinary differential equations. ISNM 48, 161–169 (1979)Google Scholar
  9. 9.
    Seydel, R.: Numerical computation of branch points in nonlinear equations. Numer. Math. 33, 339–352 (1979)CrossRefGoogle Scholar
  10. 10.
    Stoer, J., Bulirsch, R.: Introduction to numerical analysis. Berlin-Heidelberg- New York: Springer 1980Google Scholar
  11. 11.
    Wilkinson, J.H., Reinsch, C: Linear Algebra, Handbook for automatic computation. Berlin-Heidel berg- New York: Springer 1971. Contribution I/8: Businger, P., Golub, G.H.: Linear least squares solutions by Householder transformations.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • Rüdiger Seydel
    • 1
  1. 1.Fachbereich MathematikTU MünchenMünchen 2Deutschland

Personalised recommendations