Advertisement

The Convergence of Approximations to Nonlinear Equations at Simple Turning Points

  • G. Moore
  • A. Spence
Chapter
Part of the ISNM: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 54)

Abstract

Standard convergence results for approximations to solutions of non-linear equations rely heavily on such solutions being isolated. In this paper we show how such results can often be extended to certain commonly occurring non-isolated solutions, called simple turning points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselone P.M.: Collectively Compact Operator Approximation Theory. Eaglewood Cliffs, Prentice Hall. 1971.Google Scholar
  2. 2.
    Bramble J.H.: On the Convergence of Difference Approximations to Weak Solutions of Dirichlet’s Problem. Num.Math. 13(1969), 101–111.CrossRefGoogle Scholar
  3. 3.
    Fischer D., Golub G., Hald O., Leiva C and Widlund O.: On Fourier-Toeplitz methods for separable elliptic problems. Math.Comp. 28(1974), 349–368.CrossRefGoogle Scholar
  4. 4.
    Georg K.: On the Convergence of an Inverse Iteration Method for Nonlinear Elliptic Eigenvalue Problems. Num.Math. 32(1979), 69–74.CrossRefGoogle Scholar
  5. 5.
    Keller H.B.: Approximation Methods for Nonlinear Problems with Application to Two-Point Boundary Value Problems. Math.Comp. 29(1975), 464–474.CrossRefGoogle Scholar
  6. 6.
    Keller H.B. and White A.B.: Difference Methods for Boundary Value Problems in Ordinary Differential Equations. SIAM J.N.A. 12(1975), 791–802.CrossRefGoogle Scholar
  7. 7.
    Meyer-Spasche R.: A Note on the Approximation of Mildly Nonlinear Dirichlet Problems by Finite Differences. Num.Math. 33(1979), 303–314.CrossRefGoogle Scholar
  8. 8.
    Moore G.: The Application of Newton’s Method to Simple Bifurcation and Turning Point Problems. Ph.D. Thesis, Bath (1979).Google Scholar
  9. 9.
    Moore G. and Spence A.: The Calculation of Turning Points of Nonlinear Equations, (SIAM J.N.A. to appear).Google Scholar
  10. 10.
    Rabinowitz P.H.: Applications of Bifurcation Theory. Academic Press. New York. 1977.Google Scholar
  11. 11.
    Seydel R.: Numerical Computation of Branch Points in Nonlinear Equations. Num.Math. 33(1979), 339–352.CrossRefGoogle Scholar
  12. 12.
    Simpson R.B.: Existence and Error Estimates for Solutions of a discrete analogue of Nonlinear Eigenvalue Problems. Math.Comp. 26(1972), 359–375.CrossRefGoogle Scholar
  13. 13.
    Simpson R.B.: A Method for the Numerical Determination of Bifurcation States of Nonlinear Systems of Equations. SIAM J.N.A. 12(1975), 439–451.CrossRefGoogle Scholar
  14. 14.
    Spence A. and Moore G.: A Convergence Analysis for Turning Points of Nonlinear Compact Operator Equations. (To appear in Numerische Behandlung von Integralgleichungen. Ed. Albrech J. and Collatz L. Birkhauser Verlag.)Google Scholar
  15. 15.
    Weber H.: Numerische Behandlung von Verzweigungsproblemen bei gewohnlichen Differentialgleichungen. Num.Math. 32(1979), 17–29.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • G. Moore
    • 1
  • A. Spence
    • 1
  1. 1.School of MathematicsUniversity of BathBathUK

Personalised recommendations