Advertisement

Ober Ein Rayleigh-Ritz-Verfahren zur Bestimmung Kritischer Werte

  • Achim Bongers
Chapter
  • 30 Downloads
Part of the ISNM: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 54)

Abstract

This paper is concerned with the existence of critical points for a functional f defined on the level set of a second functional g. Existence of nontrivial solutions for the nonlinear eigenvalue-problem f′(u) = λg′(u) and convergence for a nonlinear analogue to the Rayleigh-Ritz-Method is proven. The results are applied to a nonlinear ordinary eigenvalue problem where it is shown that the lowest point in the continuous spectrum of the associated linearized operator is a bifurcation point of infinite multiplicity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    H. Amann, Ljusternik-Schnirelmann Theory and nonlinear eigenvalueproblems, Math. Annalen 199, 1972, 55–72CrossRefGoogle Scholar
  2. [2]
    A. Bongers, A convergence theorem for Ritz-approximations of eigenvalues with application to CI-calculation, Chem. Phys. Letters 49, 1977, 393–398CrossRefGoogle Scholar
  3. [3]
    A. Bongers, Behandlung verallgemeinerter nichtlinearer Eigenwertprobleme mit Ljusternik-Schnirelmann-Theorie, Dissertation, Mainz, 1979Google Scholar
  4. [4]
    G. Bonitz, Zum Ritzschen Verfahren, VEB, Deutscher Verlag der Wissenschaften, Berlin 1971Google Scholar
  5. [5]
    F. Browder, Existence theorems for nonlinear partial differential equations, Proc. Symp. Pure Math., Amer. Math. Soc. 16, 1970, 1–60CrossRefGoogle Scholar
  6. [6]
    C. Coffmann, Ljusternik-Schnirelmann Theory and eigenvalue problems for monotone potential operators, J. Functional Analysis, 14, 1973, 237–252CrossRefGoogle Scholar
  7. [7]
    T. Kato, Fundamental properties of Hamiltonian operators of Schrödinger type, Trans.Amer.Math.Soc. 70, 1951, 195–211.Google Scholar
  8. [8]
    B. Klahn, Die Konvergenz des Ritz’schen Verfahrens in der Quantenchemie, Dissertation, Göttingen 1975Google Scholar
  9. [9]
    T. Küpper, private Mitteilung, 1979Google Scholar
  10. [10]
    I. Justernik, Schnirelmann, Sur un pricipe topologique d’analyse, C.R.Acad. Sci. Paris 188, 1920, 295–297Google Scholar
  11. [11]
    S.G. Michlin, The numerical performance of variational methods, Wolters-Noordhoff Publ., Groningen 1971Google Scholar
  12. [12]
    M. Reeken, General theorem on bifurcation and its application to the Hartree equation of the Helium atom, J.Math.Phys. 11, 1970, 2505–2512CrossRefGoogle Scholar
  13. [13]
    C.A. Stuart Bifurcation of variational problems when the linearisation has no eigenvalues, to appearGoogle Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • Achim Bongers
    • 1
  1. 1.Fachbereich MathematickJoh.-Gutenberg Universität MainzMainzGermany

Personalised recommendations