Advertisement

Eine Numerische Behandlung von Primären Bifurkationszweigen

  • Ulrich Wiesweg
Chapter
  • 29 Downloads
Part of the ISNM: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 54)

Abstract

We deal with the problem y″ = -λ (Ly + Hy), respectively with the inverse integral equation y = G (L + K) y which has a triangular kernel. There is L linear and Hy = o (∥y∥). For numerical computation the solution is brought to functional dependence on a parameter. Turning points are regular solution points. In the special NAEV-method the completely continuous and nonlinear integral operator is approximated by a sum operator. Therefore we get a collectively compact family. By Newton-linearization of the approximating problem and approximation of the inverse of the F-derivative we get a class of Newton-like methods as a corrector component of the NAEV-method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    K.E. Atkinson, The numerical evaluation of fixed points for completely continuous operators, STAM J.Numer.Anal. 10 (1973) pp. 799–807CrossRefGoogle Scholar
  2. [2]
    K.E. Atkinson, The numerical solution of a bifurcation problem, STAM J. Numer. Anal. 14 (1977), pp. 584–599CrossRefGoogle Scholar
  3. [3]
    P.M. Anselone, Collectively compact operator approximation theory and applications, Prentice-Hall (1971)Google Scholar
  4. [4]
    A. Aulin, Newton-like methods for numerical solution of nonlinear integral equatins, Lund Ur.iv.Comp.Sc.Report LU/CS 75–1Google Scholar
  5. [5]
    M.G. Crandall, P.H. Rabinowitz, Nonlinear Sturm-Liouville Eigenvalue problems and topolgical degree, J.Math.Mech. 19 (1970) pp. 1083–1102Google Scholar
  6. [6]
    J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in L.B. Rall, N.I. ctl.anal., Academic Press (1971)Google Scholar
  7. [7]
    G. Hetzer, Bifurcation theorems of Rabinowitz type, Nonlinear Anal., Theory,Meth,&Appl. 1 (1977), pp 471–479CrossRefGoogle Scholar
  8. [8]
    J. Ize, Bifurcation theory for Fredholm operators, Preprint, BonnGoogle Scholar
  9. [9]
    H.B. Keller, Approximation methods for nonlinear problems with applications, (1975), pp. 464–474Google Scholar
  10. [10]
    H.B. Keller, Numerical solution of bifurcation and n.l. eigenvalue problems, in P.H. Rabinowitz, Appl.of bif.theory, (1977)Google Scholar
  11. [11]
    P.H. Rabinowitz, Nonlinear Sturtn-Liouville problems for 2nd order ordinary diff. equs., Comm.Pure Appl.Math.XXITI (1970)Google Scholar
  12. [12]
    P.H. Rabinowitz, Applications of bifurcation thoery, Academic Press (1977)Google Scholar
  13. [13]
    W.C. Rheinboldt, Numerical methods for a class of finite dim.bif. problems, SIAM J.Numer.Anal. 15 (1978), pp. 1–11CrossRefGoogle Scholar
  14. [14]
    R. Weiss, On the approximation of fixed points of nonlinear compact operators, SIAM J.Numer.Anal. 11 (1974), pp. 550–553CrossRefGoogle Scholar
  15. [15]
    D. Westreich, Bifurcation theory in a Banach space, Thesis, Yeshiva Univ. New York, 1971Google Scholar
  16. [16]
    U. Wiesweg, Verzweigungen bei Eigenwertaufgaben gewöhnlicher Differentialgleichungen und ihre numerische Behandlung, Diplomarbeit, Universität Dortmund (1979)Google Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • Ulrich Wiesweg
    • 1
  1. 1.Lehrstuhl f. BetriebsinformatikUniversität DortmundDeutschland

Personalised recommendations