Right and left turning points and the corresponding critical parameters of parameter dependent nonlinear equations in Rn are considered. Special attention is payed to nonlinear eigenvalue problems x = λTx, where T is positive and monotone. In the first part an analysis of simple turning points similar to [5] and [1] is presented. In the second part the inclusion of critical parameters based on the (non-) monotonicity of Newton’s method is discussed. Results of [10] are extended.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amann, H,: Multiple Positive Fixed Points of Asymptotically Linear Maps. J. Funct. Anal. 17(1974), 174–213.CrossRefGoogle Scholar
  2. 2.
    Amann, H.: Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces. SIAM Review 18 (1976), 620–709.CrossRefGoogle Scholar
  3. 3.
    Bazley, N.W. and Wake, G.C.: The Disappearance of Criticality in the Theory of Thermal Ignition. J. of Appl. Math. and Phys. 30(1979).Google Scholar
  4. 4.
    Bohl, E.: Monotonie: Lösbarkeit und Numerik bei Opera-torgleichungen. Berlin-Heidelberg-New York. Springer 1974.CrossRefGoogle Scholar
  5. 5.
    Crandall, M.G. and Rabinowitz, P.H.: Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability. Arch. Rat. Mech. and Anal. 52(1973), 161–180.CrossRefGoogle Scholar
  6. 6.
    Fradkin, L.J. and Wake, G.C.: The Critical Explosion Parameter in the Theory of Thermal Ignition. J. Inst. Math. Appl. 20(1977), 471–484.CrossRefGoogle Scholar
  7. 7.
    Joseph, D.D and Sparrow, E.M.: Nonlinear Diffusion Induced by Nonlinear Sources. Quart. of Appl. Math. (1970), 327–342.Google Scholar
  8. 8.
    Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Applications of Bifurcation Theory. P.H. Rabinowitz, ed., New York, Academic Press, 1977, 359–384.Google Scholar
  9. 9.
    Menzel, R. and Schwetlick, H.: Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen. Numer. Math. 30(1978), 65–79.CrossRefGoogle Scholar
  10. 10.
    Mooney, J.W., Voss, H., and Werner, B.: The Dependence of Critical Parameter Bounds on the Monotonicity of a Newton Sequence. Numer. Math. 33(1979), 291–301.CrossRefGoogle Scholar
  11. 11.
    Moore, G. and Spence, A.: The Calculation of Turning Points of Nonlinear Equations. (To appear in SIAM J. Numer. Anal.).Google Scholar
  12. 12.
    Pönisch, G. and Schwetlick, H.: Ein lokal überlinear konvergentes Verfahren zur Bestimmung von Rückkehrpunkten implizit definierter Raumkurven. Inform. TU Dresden 07–30–77.Google Scholar
  13. 13.
    Schmidt, J.W.: Selected Contributions to Imbedding Methods for Finite Dimensional Problems. Continuation Methods. H.J. Wacker, ed., New York, Academic Press, 1978, 215–247.Google Scholar
  14. 14.
    Seydel, R.: Numerical Computation of Branch Points in Nonlinear Equations. Numer. Math. 33(1979), 339–352.CrossRefGoogle Scholar
  15. 15.
    Simpson, R.B.: A Method for the Numerical Determination of Bifurcation States of Nonlinear Systems of Equations. SIAM J. Numer. Anal. 12(1975), 439–451.CrossRefGoogle Scholar
  16. 16.
    Sprekels, J.: Exact Bounds for the Solution Branches of Nonlinear Eigenvalue Problems. Numer. Math. 34 (1980), 29–40.CrossRefGoogle Scholar
  17. 17.
    Voss, H.: Lower Bounds for Critical Parameters in Exothermic Reactions. This Volume.Google Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • Bodo Werner
    • 1
  1. 1.Institut für Angewandte MathematikUniversität HamburgHamburg 13Deutschland

Personalised recommendations