Shooting Methods for Bifurcation Problems in Ordinary Differential Equations

  • Helmut Weber
Part of the ISNM: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 54)


We consider multiple shooting methods for bifurcation problems involving boundary value problems for ordinary differential equations. The case of bifurcation from a simple eigenvalue is treated as well as the solution of perturbed bifurcation problems. The original problem is discretizised via shooting techniques. This yields a finite-dimensional bifurcation problem which is solved by a special iteration scheme, having its origin in the theory of Lyapunov and Schmidt. A numerical example demonstrates that our algorithm workes well.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.E. Atkinson, The numerical solution of an bifurcation problem, SIAM J. Numer. Anal. 14 (1977), 584–599CrossRefGoogle Scholar
  2. [2]
    M.S. Berger, D. Westreich, A convergent iteration scheme for bifurcation theory in Banach spaces, J. Math. Anal. Appl. 43 (1973), 136–144CrossRefGoogle Scholar
  3. [3]
    E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955Google Scholar
  4. [4]
    M.G. Crandall, P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340CrossRefGoogle Scholar
  5. [5]
    Y.-M.J. Demoulin, Y.M. Chen, An iteration method for solving nonlinear eigenvalue problems, SIAM J. Numer. Anal. 28 (1975), 588–595Google Scholar
  6. [6]
    J.P. Keener, H.B. Keller, Perturbed bifurcation theory, Arch. Rational Mech. Anal. 50 (1974), 159–175CrossRefGoogle Scholar
  7. [7]
    H.B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, Applications of bifurcation theory, Academic Press, New York, 1977Google Scholar
  8. [8]
    H.B. Keller, W.F. Langford, Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal. 48 (1972), 83–108CrossRefGoogle Scholar
  9. [9]
    J.B. Keller, S. Antmann, Bifurcation theory and nonlinear eigenvalue problems, Benjamin, New York, 1969Google Scholar
  10. [10]
    S. Kesavan, La méthode de Kikuchi applique aux equations de von Karman, Numer. Math. 32 (1979), 209–232CrossRefGoogle Scholar
  11. [11]
    F. Kikuchi, An iterative finite element scheme for bifurcation analysis of semi-linear elliptic equations, Institute of Space and Aeronautical Science, University of Tokyo, Report Nr. 542 (Vol. 41, No. 6), 1976Google Scholar
  12. [12]
    W.F. Langford, Numerical solution of bifurcation problems for ordinary differential equations, Numer. Math. 28 (1977), 171–190CrossRefGoogle Scholar
  13. [13]
    W.F. Langford, A shooting algorithm for the best least squares solution of two-point boundary value problems, SIAM J. Numer. Anal. 14 (1977), 527–542CrossRefGoogle Scholar
  14. [14]
    J.E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Springer, Berlin, 1976CrossRefGoogle Scholar
  15. [15]
    G.H. Pimbley, Jr., Eigenfunction branches of nonlinear operators and their bifurcations, Lecture Notes in Mathematics 104, Springer, Berlin, 1969CrossRefGoogle Scholar
  16. [16]
    W.T. Reid, Ordinary differential equations, Wiley & Sons, New York, 1971Google Scholar
  17. [17]
    W.C. Rheinboldt, Numerical methods for a class of finite-dimensional bifurcation problems, SIAM J. Numer. Anal. 15 (1978), 1–11CrossRefGoogle Scholar
  18. [18]
    I. Stakgold, Branching of solutions of nonlinear equations, SIAM Review 13 (1971), 283–332CrossRefGoogle Scholar
  19. [19]
    M.M. Wainberg, W.A. Trenogin, Theorie der Lösungsverzweigung bei nichtlinearen Gleichungen, Akademie-Verlag, Berlin (DDR) 1973Google Scholar
  20. [20]
    H. Weber, Numerische Behandlung von Verzweigungsproblemen b. Randwertaufgaben gewöhnlicher Differentialgleichungen, Doctoral Thesis, Johannes Gutenberg-Universität Mainz, 1978Google Scholar
  21. [21]
    H. Weber, Numerical treatment of bifurcation problems for ordinary differential equations, Numer. Math. 32 (1979), 17–29CrossRefGoogle Scholar
  22. [22]
    H. Weber, Numerische Behandlung von Verzweigungsproblemen bei gewöhnlichen Randwertaufgaben, Intern. Ser. Numer. Math. 48, 176–190, Birkhäuser, Basel, 1979Google Scholar
  23. [23]
    H. Weber, Numerical solution of Hopf bifurcation problems, Mathematical Meth. in the Appl. Sci., in press (1980)Google Scholar
  24. [24]
    H. Weber, H.D. Mittelmann, Numerical methods for bifurcation problems — a survey and classification, these proceedings, 1980Google Scholar
  25. [25]
    R. Weiss, The convergence of shootings methods, BIT 13 (1973), 270–275CrossRefGoogle Scholar
  26. [26]
    R. Weiss, Bifurcation in difference approximations to two-point boundary value problems, Math. Comp. 29 (1975), 746–760CrossRefGoogle Scholar
  27. [27]
    D. Westreich, Y.L. Varol, Numerical bifurcation at simple eigenvalues, SIAM J. Numer. Anal. 16 (1979), 538–546CrossRefGoogle Scholar
  28. [28]
    D. Westreich, Y.L. Varol, Applications of Galerkin’s method to bifurcation and two-point boundary value problems, J. Math. Anal. Appl. 70 (1979), 399–422CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • Helmut Weber
    • 1
  1. 1.Abteilung MathematikUniversität DortmundDortmund 50Deutschland

Personalised recommendations