Advertisement

Abstract

The purpose of this survey paper is to examine some specific applications of the process of averaging over finite groups, compact topological groups, and compact homogeneous manifolds. These applications occur in a variety of different disciplines of pure and applied mathematics, such as (i) classical representation theory of finite groups, (ii) practical Fourier analysis, (iii) classical harmonic analysis, (iv) approximation theory, (v) complex analysis in several variables, and (vi) combinatorics. In each case, the symmetrization technique reveals itself to be a simple and efficient tool to produce far-reaching identities and inequalities in a unifying manner.

Keywords

Finite Group Hardy Space Haar Measure Group Algebra Vector Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Auslander and R. Tolimieri, Is computing with the finite Fourier transform pure of applied mathematics? Bull. Amer. Math. Soc. 1 (1979), 847–897.CrossRefGoogle Scholar
  2. 2.
    D.L. Berman, On the impossibility of constructing a linear polynomial operator giving an approximation of best order. Uspehi Mat. Nauk 14 (1959), 141–142.Google Scholar
  3. 3.
    E.W. Cheney, Introduction to Approximation Theory. McGraw-Hill Book Company, New York, St. Louis, San Francisco, Toronto, London, Sydney, 1966.Google Scholar
  4. 4.
    R.R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics. Enseignement Math. 14 (1960), 121–173.Google Scholar
  5. 5.
    C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers, New York, London, Sydney, 1962.Google Scholar
  6. 6.
    P. Delsarte, J.M. Goethals, and J.J. Seidel, Spherical codes and designs. Geometriae Dedicata 6 (1977), 363–388.CrossRefGoogle Scholar
  7. 7.
    B. Dreseler and W. Schempp, On the Charshiladze-Lozinski theorem for compact topological groups and homogeneous spaces. Manuscripta Math. 13 (1974), 321–337.CrossRefGoogle Scholar
  8. 8.
    J.M. Goethals and J.J. Seidel, Spherical designs. In: Relations between Combinatorics and Other Parts of Mathematics. (Proc. Symp. Pure Math., Vol. 34). Amer. Math. Soc, Providence, R.I., 1979.Google Scholar
  9. 9.
    A. Hurwitz, Über die Erzeugung der Invarianten durch Integration. Nachr. k. Ges. Göttingen, Math.-phys. Klasse 1897, 71–90. Also in: Mathematische Werke, Band II, pp. 546-564. Birkhäuser, Basel, 1933.Google Scholar
  10. 10.
    N. Jacobson, Basic Algebra II. W.H. Freeman and Company, San Francisco, 1980.Google Scholar
  11. 11.
    F. Lorenz and A. Schönhage, Über ein zahlentheoretisches Problem aus der Fourieranalysis. Math. Z. 120 (1971), 369–372.CrossRefGoogle Scholar
  12. 12.
    S. Lozinski, On a class of linear operators. Doklady Akad. Nauk SSSR 61 (1948), 193–196.Google Scholar
  13. 13.
    J. Marcinkiewicz, Quelques remarques sur l’interpolation. Acta Litt. Sci. Szeged 8 (1936/37), 127–130. Also in: Collected papers, pp. 200-203. Państwowe Wydawnictwo Naukowe, Warszawa, 1964.Google Scholar
  14. 14.
    H. Maschke, Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen. Math. Ann. 50 (1898), 482–498.Google Scholar
  15. 15.
    D.J. Newman, The nonexistence of projections from L1 to H1. Proc. Amer. Math. Soc. 12 (1961), 98–99.Google Scholar
  16. 16.
    W. Rudin, Projections on invariant subspaces. Proc. Amer. Math. Soc. 13 (1962), 429–432.CrossRefGoogle Scholar
  17. 17.
    W. Rudin, Function Theory in the Unit Ball of C n (Grundlehren der math. Wissenschaften 241). Springer-Verlag, New York, Heidelberg, Berlin, 1980.CrossRefGoogle Scholar
  18. 18.
    W. Schempp, Approximation on compact Riemannian globally symmetric manifolds of rank one. J. Approx. Theory 21 (1977), 236–245.CrossRefGoogle Scholar
  19. 19.
    W. Schempp, Approxmation in G-homogeneous Banach spaces. In: Constructive Theory of Functions of Several Variables. (Proc. Conf. Oberwolfach 1976, W. Schempp and K. Zeller, Eds., Lecture Notes in in Math., Vol. 571, pp. 220-225). Springer-Verlag, Berlin, Heidelberg, New York, 1977.CrossRefGoogle Scholar
  20. 20.
    W. Schempp, A note on the Newman-Schoenberg phenomenon. Math. Z. 167 (1979), 1–6.CrossRefGoogle Scholar
  21. 21.
    W. Schempp, Periodic splines and nilpotent harmonic analysis. C.R. Math. ReP. Acad. Sci. Canada 3 (1981), 69–74.Google Scholar
  22. 22.
    W. Schempp, Approximation und Transformationsmethoden III. In: Approximation and Functional Analysis (Proc. Conf. Oberwolfach 1980, P.L. Butzer, E. Görlich, and B. Sz.-Nagy, Eds., ISNM 60). Birkhäuser Verlag, Basel, Boston, Stuttgart, 1981.Google Scholar
  23. 23.
    W. Schempp, Attenuation factors and nilpotent harmonic analysis. Resultate Math, (in press).Google Scholar
  24. 24.
    W. Schempp, Complex Contour Integral Representation of Cardinal Spline Functions. With a preface by I.J. Schoenberg (Contemporary Mathematics). Amer. Math. Soc, Providence, R.I. (in press).Google Scholar
  25. 25.
    W. Schempp, Cardinal splines and nilpotent harmonic analysis (to appear).Google Scholar
  26. 26.
    W. Schempp, Harmonic Analysis on Heisenberg Groups with Applications to Spline Functions (Research Notes in Mathematics). Pitman, San Francisco, London, Melbourne (in preparation).Google Scholar
  27. 27.
    W. Schempp, Gruppentheoretische Aspekte der digitalen Signalübertragung und der kardinalen Splines (to appear).Google Scholar
  28. 28.
    W. Schempp and B. Dreseler, Einführung in die harmonische Analyse (Mathematische Leitfäden). Teubner, Stuttgart, 1980.Google Scholar
  29. 29.
    V.M. Sidelnikov, New bounds for the density of sphere packings in an n-dimensional Euclidean space. Math. USSR Sbornik 24 (1974), 147–157.CrossRefGoogle Scholar
  30. 30.
    H. Weyl, The Classical Groups, their Invariants and Representations. Princeton University Press, Princeton, N.J. 1939.Google Scholar

Copyright information

© Springer Basel AG 1983

Authors and Affiliations

  • Walter Schempp
    • 1
  1. 1.Lehrstuhl für Mathematik IUniversität SiegenSiegen 21Federal Republic of Germany

Personalised recommendations