Skip to main content

Symmetrization Formulas and Norm Estimates of Projections in Multivariate Polynomial Approximation

  • Chapter
Multivariate Approximation Theory

Abstract

Suppose we have a bounded linear operator on a Banach space X. If we know in addition a compact group of operators acting on X, this fact can sometimes be exploited to get a lower bound for the operator norm ∥A∥ of A. For example let \(\overline T\) be the one-dimensional torus group which can be identified with the interval [-π,π] and denote by \(X = C(\overline T )\) the Banach space of all complex valued 2π-periodic continuous functions on ℝ with the Čebyšev norm ∥ ∥. \(\overline T\) is realizable as a group of isometries on \(C(\overline T )\) if we associate with each \(\lambda \in \overline T\) the translation operator Tλ, which is defined by \({T_\lambda }f(x) = f(x + \lambda ),x,\lambda \in \mathbb{R}\). Then, we can define the symmetrization A of A relative to \({({T_\lambda })_{\lambda \in \overline T }}\) as the operator \({A_s} = 1/2\pi \int\limits_\pi ^\pi {{T_\lambda }} A{T_{ - \lambda }}d\lambda\) the integration of the (operator valued, continuous) integrand causing no difficulties. Clearly \(\left\| {{A_S}} \right\| \leqslant \left\| A \right\|\). Now, in concrete situations, AS can often be computed explicitly, hence also ∥AS∥, which furnishes the desired lower bound of ∥A∥. This technique has been employed by D.L. Berman [1] to prove the minimal property of the Fourier projections and has been extended to compact groups by Rudin [14], Lambert [12], Daughavet [4], and Dreseler-Schempp [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, D.L., On a class of linear operators. Dokl. Akad. Nauk SSSR. 85 (1952), 13–16.

    Google Scholar 

  2. Butzer, P.L., Stens, R.L., The operational properties of the Chebyshev transform. I. General properties. Funct. Approximatio Comment. Math. 5 (1977), 129–160.

    Google Scholar 

  3. Cheney, E.W., Introduction to approximation theory. New York: McGraw-Hill Book Company 1966.

    Google Scholar 

  4. Daughavet, I.K., Some applications of the Marcinkiewicz-Berman identity. Vestnik Leningrad Univ. Math. 1 (1974), 321–327.

    Google Scholar 

  5. Daughavet, I.K., Lebesgue constants for double Fourier series. Metody Vyčisl. 6 (1970), 8–13.

    Google Scholar 

  6. Dreseler, B., Lebesgue constants for spherical partial sums of Fourier series on compact Lie groups. In: Proceedings of the Colloquium on Fourier Analysis and Approximation Theory, Budapest 1976, 327–342.

    Google Scholar 

  7. Dreseler, B., Lebesgue constants for certain partial sums of Fourier series on compact Lie groups. In: Linear spaces and approximation. P.L. Butzer and B. Sz. Nagy (eds.). Stuttgart: Birkhäuser 1978.

    Google Scholar 

  8. Dreseler, B., Schempp, W., On the Charshiladze-Lozinski theorem for compact topological groups and homogeneous spaces. Manuscripta Math. 13 (1974), 321–337.

    Article  Google Scholar 

  9. Il’in, V.A., Problems of localization and convergence for Fourier series with respect to fundamental systems of functions of the Laplace operator. Uspehi Mat. Nauk. 22 (1968), 61–120.

    Google Scholar 

  10. Isaacson, E., Keller, H. B., Analyse numerischer Verfahren. Zürich-Frankfurt a.M.: H. Deutsch 1973.

    Google Scholar 

  11. Koornwinder, T.H., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, I., II. Nederl. Akad. Wetensch. Proc. Ser. A. 77 = Indag. Math. 36 (1974), 48–66.

    Article  Google Scholar 

  12. Lambert, P.V., On the minimum norm property of the Fourier projection in L spaces and in spaces of continuous functions. Bull. Amer. Math. Soc. 76 (1970), 798–804.

    Article  Google Scholar 

  13. Rivlin, I.Th., An introduction to the approximation of functions. Waltham Mass.: Blaisdell 1969.

    Google Scholar 

  14. Rudin, W., Projections on invariant subspaces. Proc. Amer. Math. Soc. 13 (1962), 429–432.

    Article  Google Scholar 

  15. Schönhage, A., Approximationstheorie. Berlin-New York: Walter de Gruyter & Co 1971.

    Book  Google Scholar 

  16. Stanton, R.J., Tomas, P.A., Polyhedral summability of Fourier series on compact Lie groups. Amer. J. Math.

    Google Scholar 

  17. Yudin, A.A., Yudin, V.A., Discrete imbedding and Lebesgue constants. Math. Notes (1978), 702–711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Basel AG

About this chapter

Cite this chapter

Dreseler, B. (1979). Symmetrization Formulas and Norm Estimates of Projections in Multivariate Polynomial Approximation. In: Schempp, W., Zeller, K. (eds) Multivariate Approximation Theory. ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 51. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6289-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6289-9_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-1102-5

  • Online ISBN: 978-3-0348-6289-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics