Skip to main content

Minimum Norm Quadrature in the Sobolev Spaces W mq

  • Chapter
Numerische Integration

Abstract

We consider the Sobolev space W mq of real functions f defined on the interval [-1,+1] which admit a Taylor’s representation

$$ f\left( x \right) = \sum\limits_{j = 0}^{m - 1} {{f^{\left( j \right)}}\left( { - 1} \right)\frac{{{{\left( {x - 1} \right)}^j}}}{{j!}}} + \mathop \smallint \limits_{ - 1}^{ + 1} \frac{{\left( {x - t} \right)_ + ^{m - 1}}}{{\left( {m - 1} \right)!}}{f^{\left( m \right)}}\left( t \right)dt,\;{f^{\left( m \right)}} \in {L_q}\left[ { - 1, + 1} \right]; $$
((1.1))

; here, m ≥ 2 is a fixed natural number and q ∈ [1,∞] . W mq is endowed with the usual semi-norm

$$f \to {\left\{ {\int\limits_{ - 1}^{ + 1} {{{\left| {{f^{(m)}}(t)} \right|}^q}dt} } \right\}^{1/q}}resp.\quad f \to \mathop {ess\;\sup }\limits_{ - 1 \leqslant t \leqslant + 1} \left| {{f^{(m)}}(t)} \right|$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BARRAR, R. B., LOEB, H. L., On a nonlinear characterization problem for monosplines. J. Approximation Theory 18, 220–240 (1976) .

    Article  Google Scholar 

  2. BARRAR, R. B., LOEB, H. L., On monosplines with odd multiplicities of least norm. To appear in J. Anal. Math.

    Google Scholar 

  3. BARROW, D. L., CHUI, C. K., SMITH, P. W., WARD , J. D., Unicity of best mean approximation by second order splines with variable knots. Manuscript, 21 p.

    Google Scholar 

  4. BOJANOV, B. D., Existence and characterization of monosplines of least L -deviation. Proc. Int. Conf. on Constructive Function Theory, Blagoevgrad 1977, to appear.

    Google Scholar 

  5. BOJANOV, B. D., Uniqueness of the monospline of least deviation. Manuscript, 35 p.

    Google Scholar 

  6. BRAESS, D., Bemerkung zur Nicht-Eindeutigkeit des besten L2-Monosplines. Private communication.

    Google Scholar 

  7. GALKIN, R. V., The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes. Math. Notes 15, 3–8 (1974).

    Article  Google Scholar 

  8. JETTER, K., Approximation mit Splinefunktionen und ihre Anwendung auf Quadraturformeln. Habilitationsschrift, Hagen 1978.

    Google Scholar 

  9. JETTER, K., L1-Approximation verallgemeinerter konvexer Funktionen durch Splines mit freien Knoten. Math. Zeitschrift, to appear.

    Google Scholar 

  10. JETTER, K., LANGE, G., Die Eindeutigkeit L2-optimaler polynomialer Monosplines. Math. Zeitschrift 158, 23–34 (1978).

    Article  Google Scholar 

  11. JOHNSON, R. S., On monosplines of least deviation. Trans. Amer. Math. Soc. 96, 458–477 (1960).

    Article  Google Scholar 

  12. KARLIN, S., A global improvement theorem for polynomial monosplines. In “Studies in Spline Functions and Approximation Theory”, pp. 67–82. Editors: S. Karlin, C. A. Micchelli, A. Pinkus, I. J. Schoenberg. New York: Academic Press 1976.

    Google Scholar 

  13. LANGE, G., Beste und optimale definite Quadraturformeln. Dissertation, Clausthal 1977.

    Google Scholar 

  14. LORENTZ, G. G., Approximation of Functions. New York: Holt, Rinehart & Winston 1966.

    Google Scholar 

  15. RICE, J. R., The Approximation of Functions, vol. I. Reading: Addison & Wesley 1964.

    Google Scholar 

  16. SCHOENBERG, I. J., Monosplines and quadrature formulae. In “Theory and Application of Spline Functions”, pp. 157–207. Editor: T. N. E. Greville. New York: Academic Press 1969.

    Google Scholar 

  17. SINGER, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Berlin — Heidelberg — New York: Springer 1970.

    Google Scholar 

  18. STRAUSS, H., Approximation mit Splinefunktionen und Anwendungen auf die Approximation linearer Funktionale. Habilitationsschrift, Erlangen 1976.

    Google Scholar 

  19. STRAUSS, H., Optimale Quadraturformeln und Perfektsplines. Report Nr. 38 des Inst. f. Angewandte Mathematik I der Universität Erlangen — Nürnberg. Erlangen 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Basel AG

About this chapter

Cite this chapter

Jetter, K. (1979). Minimum Norm Quadrature in the Sobolev Spaces W mq . In: Hämmerlin, G. (eds) Numerische Integration. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 45. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6288-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6288-2_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-1014-1

  • Online ISBN: 978-3-0348-6288-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics