Advertisement

Abstract

Some conditions for the existence, non-uniqueness or uniqueness and iterative construction of periodic solutions of the non-autonomous Liénard equation are considered. Especially, the problem of continua of oscillations is discussed, under conditions suggested by Bebernes-Martelli. It is shown that all periodic solutions result from one by adding a constant, and that the restoring term must be of a special degenerate type. If this term is not explicitly depending on the time an existence and uniqueness theorem can be formulated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahmad, S.: An existence theorem for periodically perturbed conservative systems. Michigan Math.J. 20 (1973), 385–392.Google Scholar
  2. [2]
    Lazer, A.C.: On Schauder’s1 fixed point theorem and forced second order nonlinear oscillations. J.Math. Analysis Appl. 21 (1968), 421–425.CrossRefGoogle Scholar
  3. [3]
    Lazer, A.C.: Application of a lemma on bilinear forms to a problem in nonlinear oscillations. Proc. Amer. Math. Soc. 33 (1972), 89–94.CrossRefGoogle Scholar
  4. [4]
    Martelli, M.: Spectral theory for nonlinear operators and forced second order nonlinear oscillations. Proceedings “Equadiff 78”, 501-512, Firenze 1978.Google Scholar
  5. [5]
    Mawhin, J.: An extension of a theorem of A.C. Lazer on forced nonlinear oscillations. J.Math. Analysis Appl. 40 (1972), 20–29.CrossRefGoogle Scholar
  6. [6]
    Mawhin, J.: Contractive mappings and periodically perturbed conservative systems. Inst.Math.Pure Appl., Uni. Cath. Louvain, Rapport 80(1974).Google Scholar
  7. [7]
    Reissig, R.: Extension of some results concerning the generalized Liénard equation. Ann.Mat.Pura Appl.(IV) 104 (1975), 269–281.CrossRefGoogle Scholar
  8. [8]
    Reissig, R.: Contractive mappings and periodically perturbed non-conservative systems. Acc.Nac.Lincei, Rend. Cl. Sci. fis.mat.nat., Ser. VIII, vol. 58 (1975), 696–702.Google Scholar
  9. [9]
    Reissig, R.: Schwingungssätze für die verallgemeinerte Liénardsche Differentialgleichung. Math. Abh. Hamburg 44 (1975), 45–51.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Rolf Reißig
    • 1
  1. 1.Institut für MathematikRuhr-UniversitätBochum 1Germany

Personalised recommendations