Advertisement

The Numerical Solution of Axisymmetric Free Boundary Porous Flow Well Problems Using Variational Inequalities

  • Colin W. Cryer
  • Hans Fetter
Chapter
  • 77 Downloads
Part of the International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Serie Internationale D’Analyse Numerique book series (ISNM, volume 48)

Abstract

The free boundary problem for a fully penetrating well of radius r and filled with water to a depth hw, in a layer of soil of depth H, radius R and permeability k(x,y) can be formulated as follows: Find ϕ ∈ C1[r,R] and \({\text{u}} \in {\text{C}}^2 (\Omega)\; \cap \;{\text{C(}}\overline \Omega {\text{)}}\) such that (kux)x + (kuy)y =0 in Ω, u(R,y) = H for 0 < y < H, un(x,0) = 0 for r < x < R, u(r,y) = hw for 0 < y < hw, u(r,y) = y for hw < y < ϕ (r), un(x, ϕ (x)) = 0 and u(x, ϕ (x)) = ϕ (x) for r < x < R, where Ω = { (x,y: 0 < y < ϕ (x)}. The results of Benci [Annali di Mat. 100 (1974), 191–209] are used to derive a variational inequality and to prove existence and uniqueness. The problem is approximated using piecewise linear finite elements and 0(h) convergence of the approximate solutions is proved using recent results due to Brezzi, Hager, and Raviart.

Keywords

Porous Medium Variational Inequality Free Boundary Hydraulic Head Free Boundary Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Adams, R. A.: Sobolev Spaces. New York, Academic Press, 1975.Google Scholar
  2. [2]
    Baiocchi, C.: Sur un Problème à Frontière Libre Traduisant le Filtrage de Liquides à Travers des Milieux Poreux. Comptes. Rendus Acad. Sci. Paris A273 (1971), 1215–1217.Google Scholar
  3. [3]
    Baiocchi, C., Brezzi, F. and Comincioli, V.: Free Boundary Problems in Fluid Flow Through Porous Media. In Proceedings Second International Symposium on Finite Element Methods in Flow Problems, Santa Margherita, Italy, 1976.Google Scholar
  4. [4]
    Bear, J.: Dynamics of Fluids in Porous Media. New York, American Elsevier, 1972.Google Scholar
  5. [5]
    Benci, V.: Su un Problema di Filtrazione in un Mezzo Poroso non Omogeneo. Rend. Acad. Naz. Lincei (8) 54 (1973), 10–15.Google Scholar
  6. [6]
    Benci, V.: On a Filtration Problem Through a Porous Medium. Annali di Matem. (4) 100 (1974), 191–209.CrossRefGoogle Scholar
  7. [7]
    Brezzi, F., Hager, W. H., and Raviart, P. A.: Error Estimates for the Finite Element Solution of Variational Inequalities Part I: Primal theory. To appear.Google Scholar
  8. [8]
    Brezzi, F. and Sacchi, G.: A Finite Element Approximation of a Variational Inequality Related to Hydraulics. Pubblicazioni No. 97, Laboratorio di Analisi Numerica del C.N.R., Università di Pavia, to appear.Google Scholar
  9. [9]
    Ciarlet, P. G. and Raviart, P. A.: General Lagrange and Hermite Interpolation in Rn with applications to Finite Element Methods. Arch. Rational Mech. Anal. 46 (1972), 1977–199.CrossRefGoogle Scholar
  10. [10]
    Cryer, C. W.: The Solution of a Quadratic Programming Problem Using Systematic Over-relaxation. SIAM J. Control 9 (1971), 385–392.CrossRefGoogle Scholar
  11. [11]
    Cryer, C. W.: A Survey of Steady-state Porous Flow Free Boundary Problems. Technical Summary Report No. 1657, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1976.Google Scholar
  12. [12]
    Cryer, C. W. and Fetter, H.: The Numerical Solution of Axisymmetric Free Boundary Porous Flow Well Problems Using Variational Inequalities. Technical Summary Report No. 1761, Mathematics Research Center, University of Wisconsin, 1977.Google Scholar
  13. [13]
    Elliott, C. M.: Some Applications of the Finite Element Method in Numerical Analysis. D. Phil. Thesis, Oxford University, September 1976.Google Scholar
  14. [14]
    Glowinski, R.: La Méthode de Relaxation. Rendiconti di Matematica 14, Universita Roma, (1971).Google Scholar
  15. [15]
    Glowinski, R., Lions, J. L. and Tremolieres, R.: Analyse Numerique des Inéquations Variationnelles. Paris, Dunod, 1976.Google Scholar
  16. [16]
    Hall, H. P.: An Investigation of Steady Flow Towards a Gravity Well. La Houille Blanche 10 (1955), 8–35.CrossRefGoogle Scholar
  17. [17]
    Hantush, M. S.: Hydraulics of Wells. Advances of Hydroscience 1 (1964), 2,81–432.Google Scholar
  18. [18]
    Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations. Berlin, Springer, 1971.CrossRefGoogle Scholar
  19. [19]
    Neuman, S. P. and Witherspoon, P. A.: Finite Element Method of Analyzing Steady Seepage with a Free Surface. Water Resources Res. 6 (1970), 889–897.CrossRefGoogle Scholar
  20. [20]
    Neuman, S. P. and Witherspoon, P. A.: Analysis of Nonsteady Flow with a Free Surface Using the Finite Element Method. Water Resources Res. 7 (1971), 611–623.CrossRefGoogle Scholar
  21. [21]
    Stampacchia, G.: Formes Bilinéaires Coercitives sur les Ensembles Convexes. Comptes Rendus Acad. Sci. Paris 258 (1964), 4413–4416.Google Scholar
  22. [22]
    Taylor, G. S. and Luthin, J. N.: Computer Methods for Transient Analysis of Water-table Aquifers. Water Resources Res. 5 (1969), 144–152.CrossRefGoogle Scholar
  23. [23]
    Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, Prentice-Hall (1962).Google Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Colin W. Cryer
    • 1
  • Hans Fetter
    • 1
  1. 1.Computer Sciences DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations