This paper is concerned in a class of bifurcation problems in ordinary differential equations. It is shown how some basic aspects of bifurcation can be handled by standard methods of numerical analysis. The procedure is illustrated by four examples.


Ordinary Differential Equation Nontrivial Solution Trivial Solution Nonlinear Integral Equation Bifurcation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bulirsch: Lecture on the Working Conference on Codes for Boundary Value Problems in ODE’s. May 14–17, 1978 in Houston. To be published in Springer Lecture Notes.Google Scholar
  2. 2.
    R. Bulirsch, J. Stoer, P. Deuflhard: Numerical Solution of Nonlinear Two-Point Boundary Value Problems I. To appear in Numer. Math., Handbook Series Approximation.Google Scholar
  3. 3.
    M.A. Krasnosel’skii: Topological Methods in the Theory of Nonlinear Integral Equations. New York: Pergamon Press 1964.Google Scholar
  4. 4.
    W.F. Langford: Numerical Solution of Bifurcation Problems for Ordinary Differential Equations. Numer. Math. 28, 171–190 (1977).CrossRefGoogle Scholar
  5. 5.
    W.E. Olmstead: Extent of the Left Branching Solution to Certain Bifurcation Problems. SIAM J. Math.Anal. 8, 392–401 (1977).CrossRefGoogle Scholar
  6. 6.
    G.H. Pimbley: Eigenfunction Branches of Nonlinear Operators, and their Bifurcations. Lecture Notes, Vol. 104. Berlin-Heidelberg-New York: Springer 1969.CrossRefGoogle Scholar
  7. 7.
    J. Scheurle: Ein selektives Projektions-Iterationsverfahren und Anwendungen auf Verzweigungsprobleme. Numer. Math. 29, 11–35 (1977).CrossRefGoogle Scholar
  8. 8.
    R. Seydel: Numerical Computation of Branch Points in Ordinary Differential Equations. Numer. Math. 31 or 32.Google Scholar
  9. 9.
    J. Stoer, R. Bulirsch: Einführung in die numerische Mathematik II. Heidelberger Taschenbuch, Band 114. Berlin-Heidelberg-New York: Springer 1973.CrossRefGoogle Scholar
  10. 10.
    H. Unger: Nichtlineare Behandlung von Eigenwertaufgaben. ZAMM 30, 281–282 (1950).CrossRefGoogle Scholar
  11. 11.
    M.M. Vainberg: Variational Methods for the Study of Nonlinear Operators. San Francisco-London-Amsterdam: Holden-Day 1964.Google Scholar
  12. 12.
    H. Wielandt: Das Iterationsverfahren bei nicht selbstadjungierten linearen Eigenwertaufgaben. Math. Zeitschrift 50, 93–143 (1944).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Rüdiger Seydel
    • 1
  1. 1.Institut für MathematikTechnischen Universität MünchenMünchen 2Germany

Personalised recommendations