Skip to main content

Abstract

An integer Square matrix with a deteminant of + 1 or −1 is called unimodular. Given a (m,m) integer matrix A, there exist unimodular matrices U,K such that S(A)=UAK is a diagonal matrix with positive diagonal elements d1,...,dr (r:=rank(A)) and zero diagonal elements dr+1,...,dm. In particular di divides di+1 (i=1,...,r−1). This was proved by Smith [21] in 1861 and the matrix S(A) is known as the Smith normal form of A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachem, A.: Beiträge zur Theorie der Corner Polyeder. Mathematical Systems in Economics, 29, A. Hain, Meisenheim, 1976

    Google Scholar 

  2. Bachem, A.: The Theorem of Minkowski For Polyhedral Monoids And Aggregated Linear Diophantine Systems. Report No. 7765-OR, Institut für Ökonometrie und Operations Research, Universität Bonn, 1977

    Google Scholar 

  3. A. Bachem and R. Kannan: Polynomial algorithms for Computing the Smith and Hermite normal forms of an integer matrix, SIAM Journal on Computing, to appear (1979)

    Google Scholar 

  4. A. Bachem and R. von Randow: Integer Theorems of Farkas Lemma Type, Report No. 78118-OR, Institut für Ökonometrie und Operations Research, University of Bonn, 1978

    Google Scholar 

  5. E.H. Bareiss: Sylvester’s Identity and MultiStep Integer-Preserving Gaussian Elimination“, Math. Comp. 22, 103 (1968), p. 565–578

    Google Scholar 

  6. S. Barnette and I.S. Paces Efficient algorithms for linear system calculations; Part I — Smith form and common divisor of polynomial matrices, International Journal of System Science 5 (1974) 403–411

    Article  Google Scholar 

  7. A. Ben-Israel and T.N.E. Greville: Generalized Inverses, ( Wiley-Interscience, New York 1974 )

    Google Scholar 

  8. W.A. Blankinship: Algorithm 287, Matrix Triangulation with Integer Arithmetic [F1], Communications of the ACM 9 (1966), p. 513

    Article  Google Scholar 

  9. W.A. Blankinship: Algorithm 288, Solution of Simultaneous Linear Diophantine Equations [F4], Communications of the ACM 9 (1966),p. 514

    Article  Google Scholar 

  10. E. Bodewig: Matrix Calculus, ( North-Holland, Amsterdam, 1956 )

    Google Scholar 

  11. G.H. Bradley: Algorithms for Hermite and Smith Normal Matrices and Linear Diophantine Equations, Mathematics Computation 25 (1971), p. 897–907

    Article  Google Scholar 

  12. J. Edmonds: Systems of Distinct Representatives and Linear Algebra, Journal of Research of the National Bureau of Standards 71B (1967), p. 241–245

    Google Scholar 

  13. J. Edmonds: private communication (August, 1978)

    Google Scholar 

  14. J.Ch. Fiorot: Generation of all integer points for given sets of linear inequalities. Mathematical Programming 3, 276–295 (1972)

    Article  Google Scholar 

  15. M.A. Frumkin; Polynomial Time Algorithms in the Theory of Linear Diophantine Equations, in: M. Karpinski, ed., Fundamentals of Computation Theory, (Springer, Lecture Notes in Computer Science 56, New York, 1977 ) pp. 386–392

    Google Scholar 

  16. D. Hilbert: über die Theorie der algebraischen Formen. Mathematische Annalen 36, 473–534 (1890)

    Article  Google Scholar 

  17. T.C. Hu: Integer Programming And Network Flows, ( Addison-Wesley, Reading, 1969 )

    Google Scholar 

  18. R.G. Jeroslow: Some Structure And Basis Theorems For Integral Monoids, Management Sciences Research Report No. 367, Graduate School of Industrial Administration, Carnegie-Mellon University, 1975

    Google Scholar 

  19. R. Kannan and C.L. Monma: On the Computational Complexity of Integer Programming Problems, in: R. Henn, B. Körte and W. Oettli, eds. Optimization and Operations Research, Lecture Notes in Economics and Mathematical Systems 157, (Springer, Heidelberg, 1978)

    Google Scholar 

  20. M. Newman: Integral Matrices, ( Academic Press, New York, 1972 )

    Google Scholar 

  21. H.J.S. Smith: On systems of linear indeterminate equations and congruences, Philosophical Transactions 151 (1861) 293–326

    Article  Google Scholar 

  22. E. Specker and V. Strassen: Komplexität von Entscheidungsproblemen, (Springer, Lecture Notes in Computer Science 43, New York, 1976 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Basel AG

About this chapter

Cite this chapter

Bachem, A., Kannan, R. (1979). Applications of Polynomial Smith Normal form Calculations. In: Collatz, L., Meinardus, G., Wetterling, W. (eds) Numerische Methoden bei graphentheoretischen und kombinatorischen Problemen. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 46. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5997-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5997-4_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-1078-3

  • Online ISBN: 978-3-0348-5997-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics