If L = linear space and lattice of real valued functions on some set X and φ:L→reals is linear, for φ to be representable in the form φ = ∫··dμ with some finitely or σ-additive μ, certain continuity conditions for φ are necessary and sufficient [6], for example Daniell’s condition in the σ-additive case. If X is compact, L contains all continuous functions f and φ ≥ O, Daniell’s condition is automatically fulfilled because of Dini’s theorem and 1∈L, yielding Riesz’s theorem with Baire measures. This is true if X is any topological space, L containing all continuous f with compact support or vanishing at ∞, and, somewhat unexpectedly, if L contains all continuous f (p.e.[7]). Similarly, if L contains all bounded f on any topological X, all linear φ ≥ O are integrals with some finitely additive μ [7].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arens, R., Representation of functionals by integrals. Duke Math. J. 17 (1950), 499–506.CrossRefGoogle Scholar
  2. [2]
    Bauer, H., Sur l’équivalence des théories de l’intégration selon N. Bourbaki et selon M.H. Stone., Bull. Soc. Math. France 85 (1957), 51–75.Google Scholar
  3. [3]
    Bichteler, K., Integration Theory. (Lecture Notes 315) Berlin/New York, Springer-Verlag 1973.Google Scholar
  4. [4]
    Day, M. M., Normed Linear Spaces. 3rd ed., (Ergebn. d. Math. 21) Berlin/New York, Springer-Verlag 1973.CrossRefGoogle Scholar
  5. [5]
    Dunford, N. — Schwartz, J. T., Linear Operators. I. 4th ed., New York, Interscience Publ. 1967.Google Scholar
  6. [6]
    Günzler, H., Linear functionals which are integrals. Rend. Sem. Mat. Fis. Milano 1974.Google Scholar
  7. [7]
    Günzler, H., Integral representations on function lattices. Rend. Sem. Mat. Fis. Milano 1974/75.Google Scholar
  8. [8]
    Kakutani, S., Concrete representations of abstract (L)-spaces and the mean ergodic theorem. Ann. of Math. 42. (1941) 523–537.CrossRefGoogle Scholar
  9. [9]
    Markoff, A., On mean values and exterior densities.. Mat. Sbornik N.S.4, 46 (1938), 165–191.Google Scholar
  10. [10]
    Metivier, M., Une condition nécessaire et suffisante d’existence d’un Espace de Représentation de H. Bauer. Archiv d. Math. 15 (1964), 450–462.CrossRefGoogle Scholar
  11. [11]
    Pollard, D. — Topsøe, F., A unified approach to Riesz type representation theorems. To appear.Google Scholar
  12. [12]
    Sondermann, D., Masse auf lokalbeschränkten Räumen. Ann. Inst. Fourier, Grenoble 12 (1969), 33–113.CrossRefGoogle Scholar
  13. [13]
    Topsøe, F., Topology and Measure. (Lecture Notes 133) Berlin/New York, Springer-Verlag 1970.Google Scholar

Copyright information

© Springer Basel AG 1974

Authors and Affiliations

  • Hans Günzler
    • 1
  1. 1.Mathematisches SeminarChristian-Albrechts-UniversitätKielGermany

Personalised recommendations