Advertisement

Abstract

The purpose of the present expository paper is to discuss basic ideas of operator representations of function algebras. Such representations originated from dilation theory. The relationship between dilations and representations is described in the first section. The second section deals partly with a dilation free approach to representations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ando, T., On a pair of commutative contractions.. Acta Sci. Math. (Szeged) 24 (1963), 88–90.Google Scholar
  2. [2]
    Arveson, W.B., Subalgebras of. C*-algebras. Acta Math. 123 (1969), 141–224.CrossRefGoogle Scholar
  3. [3]
    Arveson, W.B., Subalgebras of. C*-algebras II. Acta Math. 128 (1972), 271–308.CrossRefGoogle Scholar
  4. [4]
    Briem, E. — Davie, A.M. — Oksendal, B.K., A functional calculus for pairs of commuting contractions. Preprint.Google Scholar
  5. [5]
    Crabb, M.J. — Davie, A.M., Von Neumanns inequality for Hilbert space operators. Preprint 1973.Google Scholar
  6. [6]
    Dash, A.T., Joint spectral sets. Rev. Roumaine Math. Pures Appl. 16 (1971), no. 1, 13–26.Google Scholar
  7. [7]
    Durszt, E., On the spectrum of unitary. ϱ-dilations. Acta Sci. Math. (Szeged) 28 (1967), 299–304.Google Scholar
  8. [8]
    Foiaş, C., Some applications of spectral sets (Roumanian). Stud. Cerc. Mat. 10 (1959), 365–401.Google Scholar
  9. [9]
    Foiaş, C., La mesure harmonique-spectrale et la théorie spectrale des operateurs généraux d’un espace de Hilbert.. Bull. Soc, Math. France 85 (1957), 263–282.Google Scholar
  10. [10]
    Foiaş, C., Sur certains théorèmes de J. von Neumann concernant les ensembles spectraux. Acta Sci. Math. (Szeged) 18, 1–2 (1957) 15–20.Google Scholar
  11. [11]
    Foiaş, C. — Suciu, I., Szegö measures and spectral theory in Hilbert spaces. Rev. Roumaine Math. Pures Appl. 11. (1966), 147–159.Google Scholar
  12. [12]
    Foiaş, C. — Suciu, I., On the operator representations of logmodular algebras.. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 505–509.Google Scholar
  13. [13]
    Gamelin, T., Uniform Algebras. Prentice Hall, Englewood Cliffs 1969.Google Scholar
  14. [14]
    Gaşpar, D., On representations of function algebras.. Acta Sci. Math. (Szeged) 31 (1970), 339–346.Google Scholar
  15. [15]
    Glicksberg, I. — Wermer, J., Measures orthogonal to a Dirichlet algebra.. Duke Math. J. 30 (1963), 661–666.CrossRefGoogle Scholar
  16. [16]
    Helson, H., Compact groups with ordered duals. Proc. London Math. Soc. (3) 14 A (1965), 144–156.CrossRefGoogle Scholar
  17. [17]
    Helson, H., Compact groups with ordered duals.. J. London Math. Soc. (2) 1 (1969), 237–242.CrossRefGoogle Scholar
  18. [18]
    Helson, H. — Lowdenslager, D., Prediction theory and Fourier series in several variables.. Acta Math. 99 (1958), 165–202.CrossRefGoogle Scholar
  19. [19]
    Helson, H. — Lowdenslager, D., Prediction theory and Fourier series in several variables II. Acta Math. 106 (1961), 175–213.CrossRefGoogle Scholar
  20. [20]
    Helson, H. — Lowdenslager, D., Invariant subspaces. Proc. Sym. Lin. Spaces Jerusalem 1960, Pergamon 1961, 251-262.Google Scholar
  21. [21]
    Holbrook, J.A.R., Norm inequalities for functions of several operators. Preprint 1971.Google Scholar
  22. [22]
    Holbrook, J.A.R., Spectral dilations and polynomially bounded operators.. Indiana Univ. Math. J. 20 (1971), 1027–1034.CrossRefGoogle Scholar
  23. [23]
    Holbrook, J.A.R., Geometric invariants for Hilbert space operators. Preprint.Google Scholar
  24. [24]
    Janas, J., A note on the von Neumann inequality. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21. (1973), no. 8, 691–694.Google Scholar
  25. [25]
    Khanh, B.D., La théorie spectrale et les représentations d’algèbres de Dirichlet. Ann. Inst. Fourier 19 (1970), 115–128.Google Scholar
  26. [26]
    Khanh, B.D., Sur les mesures de Szegö. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16. (1969), no. 3, 155–159.Google Scholar
  27. [27]
    Khanh, B.D., Les A-mesures sur le tore de deux dimensions et le calcul symbolique de deux contractions permutables. J. Functional Analysis, to appear.Google Scholar
  28. [28]
    Lebow, A., On von Neumanns theory of spectral sets.. J. Math. Anal, Appl. 7 (1963), 64–90.CrossRefGoogle Scholar
  29. [29]
    Lebow, A., Spectral radius of an absolutely continuous operator. Proc. Amer. Math. Soc. 36. (1972), 511–514.CrossRefGoogle Scholar
  30. [30]
    Lebow, A., A power bounded operator that is not polynomially bounded.. Michigan Math. J. 15 (1968), 397–399.CrossRefGoogle Scholar
  31. [31]
    Mlak, W., Characterization of completely non-unitary contractions in Hilbert spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), no. 3, 111–113.Google Scholar
  32. [32]
    Mlak, W., Unitary dilations of contraction operators. Rozpr. Mat. Warszawa 1965.Google Scholar
  33. [33]
    Mlak, W., Unitary dilations in case of ordered groups.. Ann. Polon. Math. 17 (1965), 321–328.Google Scholar
  34. [34]
    Mlak, W., Representations of some algebras of generalized analytic functions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13, (1965), 211–214.Google Scholar
  35. [35]
    Mlak, W., A note on Szegö type properties of semi-spectral measures. Studia Math. 31 (1968), 241–251.Google Scholar
  36. [36]
    Mlak, W., Decompositions and extensions of operator valued representations of function algebras.. Acta Sci. Math. (Szeged) 30 (1969), 181–193.Google Scholar
  37. [37]
    Mlak, W., Absolutely continuous operator valued representations of function algebras. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1969), no. 9, 547–550.Google Scholar
  38. [38]
    Mlak, W., On semi-groups of contractions in Hilbert spaces, Studia Math. 26 (1966), 263–272.Google Scholar
  39. [39]
    Mlak, W., Partitions of spectral sets.. Ann. Polon, Math. 25 (1972), 273–280.Google Scholar
  40. [40]
    Mlak, W., Decompositions of operator valued representations of function algebras. Studia Math. 36 (1970), 111–123.Google Scholar
  41. [41]
    Mlak, W., Algebraic polynomially bounded operators. Ann. Polon. Math. 29 (1974), 103–109.Google Scholar
  42. [42]
    Mlak, W., Decompositions of polynomially bounded operators. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21. (1973), no. 4, 317–322.Google Scholar
  43. [43]
    Mlak, W., Semi-spectral measures of two commuting contractions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), no. 8, 695–698.Google Scholar
  44. [44]
    Mlak, W., Note on unitary dilations of two commuting contractions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), no. 10, 941–944.Google Scholar
  45. [45]
    Mlak, W., Spectral properties of Q-dilations. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.Phys. 17 (1969), no. 6, 397–400.Google Scholar
  46. [46]
    Muhly, P.S., A structure theory for isometric representations of a class of semi-groups.. J. Reine Angew. Math. 255 (1972), 135–154.Google Scholar
  47. [47]
    Muhly, P.S., Some remarks on the spectra of unitary dilations. Studia Math., to appear.Google Scholar
  48. [48]
    Muhly, P.S., The distant future. Preprint.Google Scholar
  49. [491.
    Naimark, M.A., On a representation of additive operator set functions (in Russian). Dokl. Akad. Nauk SSSR 41 (1943), 359–361.Google Scholar
  50. [50]
    von Neumann, J., Eine Spektraltheorie für allgemeine Operatoren einesunitären Raumes.. Math. Nachr. 4 (1951), 258–281.CrossRefGoogle Scholar
  51. [51]
    Parrot, S., Unitary dilations for commuting contractions. Pacific J. Math. 34. (1970), 481–490.CrossRefGoogle Scholar
  52. [52]
    Racz, A., Sur les transformations de classe ζƍ dans espace de Hilbert.. Acta Sci. Math. (Szeged) 28 (1967), 305–310.Google Scholar
  53. [53]
    Rudin, W., Function Theory in Polydiscs. Benjamin Inc., New York-Amsterdam, 1969.Google Scholar
  54. [54]
    Sarason, D., On spectral sets having connected component.. Acta Sci. Math. (Szeged) 26 (1965), 289–299.Google Scholar
  55. [55]
    Schreiber, M., Absolutely continuous operators.. Duke Math. J. 29 (1962), 175–190.CrossRefGoogle Scholar
  56. [56]
    Schreiber, M., A functional calculus for general operators in Hilbert spaces.. Trans. Amer. Math. Soc. 87 (1958), 108–118.CrossRefGoogle Scholar
  57. [57]
    Seever, G., Operator representations of uniform algebras. Preprint 1972.Google Scholar
  58. [58]
    Suciu, I., On the semi-groups of isometries.. Studia Math. 30 (1968), 101–110.Google Scholar
  59. [591.
    Suciu, I., Function Algebras. Bucharest 1973.Google Scholar
  60. [60]
    Suciu, I., Harnack inequalities for a functional calculus. Coll. Math. So. J. Bolyai, Tihany 1970, 499-511.Google Scholar
  61. [61]
    Szafraniec, F.H., Decompositions of non-contractive operator valued representations of Banach algebras.. Studia Math. 42 (1972), 97–108.Google Scholar
  62. [62]
    Szafraniec, F.H., Some spectral properties of operator valued representations of function algebras. Annales Pol.Math. 25 (1971), 187–194.Google Scholar
  63. [63]
    Sz.-Nagy, B., Sur les contractions de l’espace de Hilbert.. Acta Sci. Math. (Szeged) 15 (1953), 87–92.Google Scholar
  64. [64]
    Sz.-Nagy, B., Fortsetzung linearer Transformationen des Hilbertschen Raumes mit Austritt aus dem Raum. Anhang zu Riesz, F.-Sz.-Nagy, B., Vorlesungen über Funktionalanalysis. Berlin, Deutscher Verlag der Wissenschaften, 1956.Google Scholar
  65. [65]
    Sz.-Nagy, B., Products of operators of class ζƍ.. Rev. Roumaine Math. Pures Appl. 6 (1968), 897–899.Google Scholar
  66. [66]
    Sz.-Nagy, B. — Foiaş, C., Harmonic Analysis of Operators in Hilbert Space. North-Holland Publishing Co., Amsterdam, Akadémiai Kiadó, Budapest 1970.Google Scholar
  67. [67]
    Szpunar, W., Doubly commuting operator representations of Dirichlet algebras.. Ann. Polon. Math. 30 (1974), 185–191.Google Scholar
  68. [68]
    Szymanski, W., Decompositions of operator valued functions in Hilbert spaces. Studia Math. L(3) (1973), 265-280.Google Scholar
  69. [69]
    Varapoulos, N.T., Sur une inégalité de von. Neumann. C.R. Acad. Sci. Paris Sér. A-B 277 (1973), 19–22.Google Scholar
  70. [70]
    Wilken, D., The support of representing measures for R(X). Pacific J. Math. 26 (1968) 621–626.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1974

Authors and Affiliations

  • W. Mlak
    • 1
  1. 1.Instytut Matematyczny PANKrakówPoland

Personalised recommendations