Skip to main content

Abstract

Let C denote the space of 2π-periodic continuous functions with the uniform norm. Then Korovkin’s theorem states that if {Ln} is a sequence of monotone (positive) linear operators C → C then necessary and sufficient conditions for Lnf → f for each f ∈ C are that the convergence should take place for the functions 1, cosine and sine. A proof will be found in Korovkin [6], a rather more general one is given by Price [7]. The monograph by De Vore [4] is devoted to an examination of positive operators and further references will be found there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. K. Bary. — A Treatise on Trigonometric Series, vol.11. Pergamon 1964.

    Google Scholar 

  2. S. N. Bernstein. — On a Method of Summation of Trigonometric Series. Collected works I, 523-5.

    Google Scholar 

  3. P. L. Butzer and R. J. Nessel. — Fourier Analysis and Approximation I. Birkhauser-Verlag, 1971.

    Google Scholar 

  4. R. A. De Vore. — The Approximation of Continuous Functions by Positive Operators. Springer 1972.

    Google Scholar 

  5. G. H. Hardy. — Divergent Series, Oxford 1949.

    Google Scholar 

  6. P. P. Korovkin. — Linear Operators and Approximation Theory. Hindustani Publishing Co. 1960.

    Google Scholar 

  7. J. D. Pryce. — Basic Methods of Linear Functional Analysis. Hutchinson 1973.

    Google Scholar 

  8. W. W. Rogosinski. — Über die Abschnitte Trigonometrischer Reihen. Math. Ann. 95, 1925, 110–134.

    Article  Google Scholar 

  9. B. Sz-Nagy. — Méthodes de Sommation des Séries de Fourier, I Ac. Sz. 12 (1950), 204–210.

    Google Scholar 

  10. A. Zygmund. — Trigonometric Series, vol.I. Cambridge 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Basel AG

About this chapter

Cite this chapter

Kershaw, D. (1974). Regular and Convergent Korovkin Sequences. In: Butzer, P.L., Szőkefalvi-Nagy, B. (eds) Linear Operators and Approximation II / Lineare Operatoren und Approximation II. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 25. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5991-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5991-2_30

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5992-9

  • Online ISBN: 978-3-0348-5991-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics