Advertisement

Zusammenfassung

Es sei X ein Banachraum von 2π-periodischen, integrierbaren Funktionen, der den Raum P der trigonometrischen Polynome enthält, und Sn der n-te Fourierteilsummenoperator, d.h.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Bennett, C. On the harmonic analysis of rearrangement invariant Banach function spaces. Thesis, Univ. of Newcastle upon Tyne, 1971.Google Scholar
  2. [2]
    Boyd, D.W. The Hilbert transform on rearrangement invariant spaces. Canad. J. Math. 19 (1967), 599–616.CrossRefGoogle Scholar
  3. [3]
    Boyd, D.W. Indices of spaces of functions and their relation to interpolation. Canad. J. Math. 21 (1969) 1 1245–1254.CrossRefGoogle Scholar
  4. [4]
    Boyd, D.W. Indices for Priicz spaces. Pacific J. Math. 39 (1971), 315–323.CrossRefGoogle Scholar
  5. [5]
    Butzer, P.L. — Berens, H. Semi-Groups of Operators and Approximation. Grundlehren 145, Berlin, Springer Verlag 1967.Google Scholar
  6. [6]
    Calderon, A. P. Spaces between L 1 and L and the theorem of Marcinkiewicz. Studia Math. 26 (1966), 273–299.Google Scholar
  7. [7]
    Fehér, F. — Gaşpar, D. — Johnen, H. Der Konjugiertenoperator auf rearrangement invarianten Funktionenräumen. Math. Z. 134 (1973), 129–141.CrossRefGoogle Scholar
  8. [8]
    Fehér, F. — Gaşpar, D. — Johnen, H. Normkonvergenz von Fourierreihen in rearrangement invarianten Banachräumen. J. Functional Anal. 13 (1973), 417–434.CrossRefGoogle Scholar
  9. [9]
    Halperin, I. Uniform convexity in function spaces. Duke Math. J. 21 (1954), 205–208.CrossRefGoogle Scholar
  10. [10]
    Krasnosel’ski, M.A. — Rutickii, YA.B. Convex Functions and Priicz Spaces. Groningen, P. Noordhoff Ltd. 1961.Google Scholar
  11. [11]
    Lorentz, G.G. Some new functional spaces. Ann. of Math. 51 (1951), 37–55.CrossRefGoogle Scholar
  12. [12]
    Lorentz, G.G. On the theory of spaces A. Pacific J. Math. 1 (1951), 411–429.CrossRefGoogle Scholar
  13. [13]
    Lorentz, G.G. — Wertheim, D.G. Representation of linear functionals on Köthe spaces. Canad. J. Math. 5 (1953) 568–575.CrossRefGoogle Scholar
  14. [14]
    Luxemburg, W.A. Banach Function Spaces. Assen, Van Gorcum & Co. 1955.Google Scholar
  15. [15]
    Ryan, R. Conjugate functions in Priicz spaces. Pacific J. Math. 13(1963), 1371–1377.CrossRefGoogle Scholar
  16. [16]
    Zaanen, A.C. Integration. Amsterdam, North-Holland Publishing Comp. 1967.Google Scholar

Copyright information

© Springer Basel AG 1974

Authors and Affiliations

  • Dumitru Gaşpar
    • 1
  • H. Johnen
    • 2
  1. 1.Fakultät für MathematikUniversität TimişoaraTimişoaraRumänien
  2. 2.Fakultät für MathematikDeutschland

Personalised recommendations