This paper surveys some particular developments of the last ten years in the theory of approximation of semigroups of operators. There is also a little new material in the form of examples that do not fit into the existing theory. Among general references, perhaps the most convenient are Yosida [58], Kato [26], and the new text by Reed and Simon [42]. Several of the topics are treated concisely and elegantly in lecture notes of Nelson [37].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bellini-Morante, A., Multigroup neutron transport. J. Mathematical Phys. 12 (1972), 1146–1150.CrossRefGoogle Scholar
  2. [2]
    Breitenecker, M. — Grümm, H.-R., Note on trace inequalities. Comm. Math. Phys. 26 (1972), 276–279.CrossRefGoogle Scholar
  3. [3]
    Brezis, H. — Pazy, A., Convergence and approximation of semigroups of non-linear operators. J. Functional Anal — ysis 9 (1972), 63–74.CrossRefGoogle Scholar
  4. [4]
    Brezis, H. — Rosenkrantz, W. — Singer, B., On a degenerate elliptic-parabolic equation occurring in the theory of probability. Comm. Pure Appl. Math. 24 (1971), 395–416.CrossRefGoogle Scholar
  5. [5]
    Brezis, H. — Rosenkrantz, W. — Singer, B., An extension of Khintchine’s estimate for large deviations to a class of Markov chains converging to a singular diffusion. Comm. Pure Appl. Math. 24 (1971), 705–726.CrossRefGoogle Scholar
  6. [6]
    Buche, A.B., Approximation of semigroups of operators on Fréchet spaces. Proc. Japan Acad. 44 (1968), 816–819.CrossRefGoogle Scholar
  7. [7]
    Butzer, P.L. — Berens, H., Semigroups of operators and approximation. Berlin/New York, Springer, 1967.CrossRefGoogle Scholar
  8. [8]
    Chernoff, P.R., Note on product formulas for operator semigroups. J. Functional Analysis 2 (1968), 238–242.CrossRefGoogle Scholar
  9. [9]
    Chernoff, P.R., Perturbations of dissipative operators with relative bound one. Proc. Amer. Math. Soc. 33 (1972), 72–74.CrossRefGoogle Scholar
  10. [10]
    Dorroh, J.R., Semigroups of nonlinear transformations, 33–53 in Linear Operators and Approximation, Butzer, P.L. — Kahane, J.P. — Sz.-Nazy, B. eds. (ISNM 20) Basel/ Stuttgart, Birkhäuser Verlag 1971.Google Scholar
  11. [11]
    Ebin, D.G. — Marsden, J., Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92 (1970), 102–163.CrossRefGoogle Scholar
  12. [12]
    Emch, G.G. — Wolfe, J. C., A model for dissipative behavior in non-linear quantum optics. J. Mathematical Phys. 13 (1972), 1236–1243.CrossRefGoogle Scholar
  13. [13]
    Faris, W.G., The product formula for semigroups defined by Friedrichs extensions. Pacific J. Math. 22 (1967), 47–70.CrossRefGoogle Scholar
  14. [14]
    Goldstein, J.A., Abstract evolution equations. Trans. Amer. Math. Soc. 141 (1969), 159–185.CrossRefGoogle Scholar
  15. [15]
    Grunbaum, F.A., Propagation of chaos for the Boltzmann equation. Arch. Rational Mech. Anal. 42 (1971), 323–345.CrossRefGoogle Scholar
  16. [16]
    Gustafson, K. A perturbation lemma. Bull. Amer. Math. Soc. 72 (1966), 334–338.CrossRefGoogle Scholar
  17. [17]
    Hasegawa, M., A note on the convergence of semigroups of operators. Proc. Japan Acad. 40 (1964), 262–266.CrossRefGoogle Scholar
  18. [18]
    Hennion, H., Sur le mouvement d’une particule lourde soumise à des collisions dans un système infini de particules légères. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1973), 123–154.CrossRefGoogle Scholar
  19. [19]
    Hepp, K. — Lieb, E.H., The Dicke maser model. Ann. Physics 76 (1973), 360–404.CrossRefGoogle Scholar
  20. [20]
    Hille, E. — Phillips, R. S., Functional analysis and semigroups. Amer. Math. Soc. Collog. Publ. 31, 1957.Google Scholar
  21. [21]
    Holley, R., The motion of a heavy particle in an infinite one-dimensional gas of hard spheres. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 17 (1971), 181–219.CrossRefGoogle Scholar
  22. [22]
    Kato, T., Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Amer. Math. Soc. 70 (1951). 195–211.Google Scholar
  23. [23]
    Kato, T., On linear differential equations in Banach spaces. Comm. Pure Appl. Math. 9 (1956), 479–486.CrossRefGoogle Scholar
  24. [24]
    Kato, T., Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan 5 (1956), 208–234.CrossRefGoogle Scholar
  25. [25]
    Kato, T., Remarks on pseudo-resolvents and infinitesimal generators of semigroups. Proc. Japan Acad. 35 (1959), 467–468.CrossRefGoogle Scholar
  26. [26]
    Kato, T., Perturbation theory for linear operators. Berlin/New York, Springer Verlag, 1966.CrossRefGoogle Scholar
  27. [27]
    Komura, T., Semigroups of operators in locally convex spaces. J. Functional Analysis 2 (1968), 258–296.CrossRefGoogle Scholar
  28. [28]
    Kurtz, T.G., Extensions of Trotter’s operator semigroup approximation theorem. J. Functional Analysis 3 (1969), 354–375.CrossRefGoogle Scholar
  29. [29]
    Kurtz, T.G., A general theorem on the convergence of operator semigroups. Trans. Amer. Math. Soc. 148 (1970), 23–32.CrossRefGoogle Scholar
  30. [30]
    Kurtz, T.G., A random Trotter product formula. Proc. Amer. Math. Soc. 35 (1972), 147–154.CrossRefGoogle Scholar
  31. [31]
    Lax, P.D. — Richtmyer, R. D., Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math. 9 (1956), 267–293.CrossRefGoogle Scholar
  32. [32]
    Lumer, G. — Phillips, R. S., Dissipative operators in a Banach space. Pacific J. Math 11 (1961), 679–698.CrossRefGoogle Scholar
  33. [33]
    Miyadera, I., On perturbation theory for semigroups of operators. Tôhoku Math. J. 18 (1966), 299–310.CrossRefGoogle Scholar
  34. [34]
    Moore, R. T., Duality methods and perturbation of semigroups. Bull. Amer. Math. Soc. 73 (1967), 548–553.CrossRefGoogle Scholar
  35. [35]
    Nelson, E., Feynman integrals and the Schrödinger equation. J. Mathematical Phys. 5 (1964), 333–343.Google Scholar
  36. [36]
    Nelson, E., Interaction of nonrelativistic particles with a quantized scalar field. J. Mathematical Phys. 5 (1964), 1190–1197.CrossRefGoogle Scholar
  37. [37]
    Nelson, E., Topics in dynamics: flows. Princeton, Princeton University Press, 1969.Google Scholar
  38. [38]
    Oharu, S., On the convergence of semigroups of operators. Proc. Japan Acad. 42 (1966), 880–884.CrossRefGoogle Scholar
  39. [39]
    Oharu, S. — Sunouchi, H., On the convergence of semigroups of linear operators. J. Functional Analysis 6 (1970), 292–304.CrossRefGoogle Scholar
  40. [40]
    Okazawa, N., A perturbation theorem for linear contraction semigroups on reflexive Banach spaces. Proc. Japan Acad. 47 (1971), 947–949.CrossRefGoogle Scholar
  41. [41]
    Pitt, L., Products of Markovian semigroups of operators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 241–254.CrossRefGoogle Scholar
  42. [42]
    Reed, M.C. — Simon, B., Methods of mathematical physics. Volume I, Functional Analysis. New York, Academic Press, 1972. Volume II, Analysis of operators, in press.Google Scholar
  43. [43]
    Sato, K., On the generators of non-negative contraction semigroups in Banach lattices. J. Math. Soc. Japan 20 (1968), 423–436.CrossRefGoogle Scholar
  44. [44]
    Schassberger, R., Ein Wartesystem mit zwei parallelen Warteschlangen. Computing 3 (1968), 110–124.CrossRefGoogle Scholar
  45. [45]
    Seidman, T.I., Approximation of operator semigroups. J. Functional Analysis 5 (1970), 160–166.CrossRefGoogle Scholar
  46. [46]
    Silverstein, M., A new approach to local times. J. Math. Mech. 17 (1968), 1023–1054.Google Scholar
  47. [47]
    Strang, G., Approximating semigroups and the consistency of difference schemes. Proc. Amer. Math. Soc. 20 (1969), 1–7.CrossRefGoogle Scholar
  48. [48]
    Thompson, C.J., Inequalities and partial orders on matrix spaces. Indiana Univ. Math. J. 21 (1971), 469–480.CrossRefGoogle Scholar
  49. [49]
    Trotter, H. F., Approximation of semigroups of operators. Pacific J. Math. 8 (1958), 887–919.CrossRefGoogle Scholar
  50. [50]
    Trotter, H.F., On the product of semigroups of operators. Proc. Amer. Math. Soc. 10 (1959), 545–551.CrossRefGoogle Scholar
  51. [51]
    Trotter, H.F., Discrete approximations of continuous Markov processes. Proceedings of IBM Scientific Computing Symposium on Large Scale Problems, 37–42. New York 1963.Google Scholar
  52. [52]
    Watanabe, S. — Watanabe, T., Convergence of isotropic scattering transport process to Brownian motion. Nagoya Math. J. 40 (1970), 161–171.Google Scholar
  53. [53]
    Watanabe, T., Approximation of uniform transport process on a finite interval to Brownian motion. Nagoya Math. J. 32 (1968), 297–314.Google Scholar
  54. [54]
    Watanabe, T., Convergence of transport process to diffusion. Proc. Japan Acad. 45 (1969), 470–472.CrossRefGoogle Scholar
  55. [55]
    Watanabe, T., On the boundary condition of transport semigroup. Nagoya Math. J. 37 (1970), 219–241.Google Scholar
  56. [56]
    Wehrl, A., Spin waves and the BCS model. Comm. Math. Phys. 23 (1971), 319–342.CrossRefGoogle Scholar
  57. [57]
    Weiss, B., Abstract vibrating systems. J. Math. Mech. 17 (1967), 241–255.Google Scholar
  58. [58]
    Yosida, K., Functional Analysis. New York, Academic Press, 1965.Google Scholar
  59. [59]
    Yosida, K., On holomorphic Markov processes. Proc. Japan Acad. 42 (1966), 313–317.CrossRefGoogle Scholar
  60. [60]
    Yosida, K., A perturbation theorem for semigroups of linear operators. Proc. Japan Acad. 41 (1965), 645–647.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1974

Authors and Affiliations

  • Hale F. Trotter
    • 1
  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations