Skip to main content

Abstract

In [3] Boneva, Kendall and Stefanov (B.K.S.) have effectively rediscovered the essential features of what I like to call cardinal cubic spline interpolation. Moreover, and this is an important point, the data are not the usual function values that are to be interpolated, but rather approximations of the derivative (i.e. the unknown density function) in the form of a histogram. This (pershaps only apparent) difference is bridged by the ingenious area-matching condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlberg, J.H., Nilson, E.N. and Walsh, J.L.: The theory of splines and their applications, Academic Press, New York/London, 1967.

    Google Scholar 

  2. Bliss, C.I.: Statistics in Biology, Vol. 1, McGraw-Hill, New York, 1967.

    Google Scholar 

  3. Boneva, L.I., Kendall, D.G. and Stefanov, I.: Spline transformations: Three new diagnostic aids for the statistical data-analyst, J. of the Royal Statistical Soc., Series B, 33 (1971), 1–70.

    Google Scholar 

  4. de Boor, C.: On calculating with B-splines, J. of Approximation Theory, 6 (1972), 50–62.

    Article  Google Scholar 

  5. Carathéodory, C.: Vorlesungen über reelle Funktionen, Second Edition, B.G. Teubner, Leipzig-Berlin, 1927.

    Book  Google Scholar 

  6. Carlson, R.E. and Hall, C.A.: On piecewise polynomial interpolation in rectangular polygons, J. of Approx. Theory, 4 (1971), 37–53.

    Article  Google Scholar 

  7. Curry, H.B. and Schoenberg, I.J.: On Polya frequency functions IV. The fundamental spline functions and their limits. J. d’Analyse Math. (Jérusalem), 17 (1966), 71–107.

    Article  Google Scholar 

  8. Greville, T.N.E.: Introduction to spline functions, 1–35 in Theory and applications to spline functions (T.N.E. Greville, Ed.), Academic Press, New York/London, 1969.

    Google Scholar 

  9. Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. 4 (1946), 45–99, 112–141.

    Google Scholar 

  10. Schoenberg, I.J.: Notes on spline functions II. On the smoothing of histograms, MRC Tech. Sum. Report #1222, March 1972, Madison, Wisconsin.

    Google Scholar 

Download references

Authors

Editor information

A. Meir A. Sharma

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer Basel AG

About this chapter

Cite this chapter

Schoenberg, I.J. (1973). Splines and Histograms. In: Meir, A., Sharma, A. (eds) Spline Functions and Approximation Theory. ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 21. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5979-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5979-0_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5980-6

  • Online ISBN: 978-3-0348-5979-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics