Skip to main content

Abstract

Let X be a compact set in the complex plane C. Let H(X) be the uniform closure on X of those real continuous functions each harmonic in a neighborhood of X. Let D(X) be the space of those real continuous functions on X harmonic on the interior of X. In 1941 M. V. Keldysh [4] showed that if , the interior of X, was connected and X is the closure of , then H(X) = D(X) if each regular point of dX was a point of stability for the Dirichlet problem on X. Much earlier Wiener [6] has proved that a boundary point of X was a regular point for the Dirichlet problem if and only if

$$ \sum\limits_{n = 1}^\infty {\frac{n}{{\log \frac{1}{{\gamma ({A_n}(x) - X^\circ )}}}} = \infty } $$
((1))

where A n (x) = {z:l/2n+1 ≦ |z-x|≧l/2n} and y denotes the logarithmic capacity. In [4] Keldysh observed that x would be a point of stability for the Dirichlet problem if and only if

$$ \sum\limits_{n = 1}^\infty {\frac{n}{{\log \frac{1}{{\gamma ({A_n}(x) - X)}}}} = \infty } $$
((2))

.

This research was supported by the National Science Foundation Grant # GP-8383.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. E. Bishop, A minimal boundary for function algebras. Pacific. J. Math. 9 (1959), 629–642.

    Article  Google Scholar 

  2. M. Brelot, Sur un théorème de prolongement fonctionnel de Keldysh concernant le problème de Dirichlet. J. d’Analyse Math. 8 (1960), 273–288.

    Article  Google Scholar 

  3. P.C. Curtis, Jr., Peak points for algebras of analytic functions. J. Functional Analysis 3 (1969), 35–47.

    Article  Google Scholar 

  4. M. V. Keldysh, On the solubility and the stability of Dirichlet’s problem. Uspehi Mat. Nauk USSR 8 (1941), 171–231.

    Google Scholar 

  5. M. Tsuji, Potential Theory in Modern Function Theory. Maruzen, Tokyo 1959.

    Google Scholar 

  6. N. Wiener, Certain notions in potential theory. J. Math. Phys. 3 (1924), 24–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. L. Butzer B. Szőkefalvi-Nagy

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Basel AG

About this chapter

Cite this chapter

Curtis, P.C. (1969). On a Theorem of Keldysh and Wiener. In: Butzer, P.L., Szőkefalvi-Nagy, B. (eds) Abstract Spaces and Approximation / Abstrakte Räume und Approximation. ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 10. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5869-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5869-4_33

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5871-7

  • Online ISBN: 978-3-0348-5869-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics