Skip to main content

Zusammenfassung

Die von S. Bernstein [1] für reelle Funktionen auf dem Intervall [0,1] erklärten Bernsteinpolynome wurden von verschiedenen Autoren verallgemeinert. A. Dinghas [3] erklärte Bernsteinpolynome für reelle Funktionen auf

$$ {K_m} = \{ ({x_1},...,{x_m}) \in {R^m}|{x_1}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \geqslant } 0,...,{x_m}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \geqslant } 0,{x_1} + ... + {x_m}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } 1\} $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. S. Bernstein, Démonstration du théorème de Weierstrass, fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow (2) 13 (1912–13), 1–2.

    Google Scholar 

  2. P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation. Springer, Berlin— New York 1968.

    Google Scholar 

  3. A. Dinghas, Über einige Identitäten von Bernsteinschem Typus. Norske Vid. Selsk. Fohr. Trondheim 24 (1951), 96–97.

    Google Scholar 

  4. P. R. Halmos, Measure Theory. Van Nostrand, New York 1950.

    Google Scholar 

  5. R. P. Kelisky and T. J. Rivlin. Iterates of Bernstein polynomials. Pacific J. Math. 21 (1967), 511–520.

    Article  Google Scholar 

  6. K. de Leeuw, On the degree of approximation by Bernstein polynomials. J. Analyse Math. 7 (1959), 89–104.

    Article  Google Scholar 

  7. G. G. Lorentz, Inequalities and the saturation. In: On Approximation Theory, ed. by P. L. Butzer—J. Korevaar. ISNM 5, pp. 200–207, Birkhäuser, Basel 1964.

    Google Scholar 

  8. R. Schnabl, Eine Verallgemeinerung der Bernsteinpolynome. Math. Ann. (Im Druck.)

    Google Scholar 

  9. P. C. Sikkema, Über Potenzen von verallgemeinerten Bernsteinoperatoren. Mathematica (Cluj) 8 (31) (1966), 173–180.

    Google Scholar 

  10. D. D. Stancu, De Vapproximation, par des polynômes du type Bernstein, des fonctions de deux variables. Com. Acad. R. P. Romîne 9 (1959), 773–777.

    Google Scholar 

  11. E. Voronowskaja, Détermination de la forme asymptotique d’approximation des fonctions par lespolynômes de M. Bernstein. C. R. Acad. Sci. URSS (1932), 79–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. L. Butzer B. Szőkefalvi-Nagy

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Basel AG

About this chapter

Cite this chapter

Schnabl, R. (1969). Zum Saturationsproblem der verallgemeinerten Bernsteinoperatoren. In: Butzer, P.L., Szőkefalvi-Nagy, B. (eds) Abstract Spaces and Approximation / Abstrakte Räume und Approximation. ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 10. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5869-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5869-4_26

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5871-7

  • Online ISBN: 978-3-0348-5869-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics