Advertisement

Abstract

Let f(x) be continuos and periodic function with period 2π and let:
$$ f(x) \sim \frac{{{a_0}}} {2} + \sum\limits_{n = 1}^\infty{({a_n}\cos nx + {b_n}\sin nx)} $$
(1)
.

Keywords

FOURIER Series Periodic Function Acta Math Strong Approximation Conjugate Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Alexits, Sur les bornes de la théorie de l’approximation des fonctions continues par polynômes. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 329–340.Google Scholar
  2. [2]
    G. Alexits und D. Králik, Über den Annäherungsgrad der Approximation im starken Sinne von stetigen Funktionen. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (A) (1963), 317–327.Google Scholar
  3. [3]
    G. Alexits und L. Leindler, Über die Approximation im starken Sinne. Acta Math. Acad. Sci. Hungar. 16 (1965), 27–32.CrossRefGoogle Scholar
  4. [4]
    G. Freud, Über die Sättigungsklasse der starken Approximation durch Teilsummen der Fourierschen Reihe. Acta Math. Acad. Sci. Hungar. 20 (1969)(im Druck).Google Scholar
  5. [5]
    L. Leindler, Über die Approximation im starken Sinne, Acta Math. Acad. Sci. Hungar. 16 (1965), 255–262.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1969

Authors and Affiliations

  • L. Leindler
    • 1
  1. 1.Institutum BolyaianumUniversity of SzegedHungary

Personalised recommendations