Advertisement

Abstract

Throughout the paper, we suppose that the function f(x) belongs to the class L p (1 ≦ p < ∞) or C (f(0) = f (2π)) over (0, 2π) and is extended periodically with period 2π. For the sake of simplicity of notation, we may write L instead of C. Let T n (f) be a trigonometric polynomial of best approximation of order n for f(x) with respect to the corresponding norm, that is
$$ {\left\| {f - {T_n}(f)} \right\|_p} = E_n^{(p)}(f) $$
where E n (p) (f) is the best approximation of f(x) of order n. Moreover for the function which belongs to the class L p (1 ≦ p < ∞), by the integral modulus of smoothness in L p of order k ≧ 1 we mean the expression
$$\omega _n^{(p)}(f;t) = \mathop {\sup }\limits_{0 < \left| h \right| \leqq t} {\left[ {\int\limits_0^{2\pi } {{{\left| {\Delta _h^kf(x)} \right|}^p}dx} } \right]^{1/p}}$$
, where
$$[tex]\Delta _h^kf(x) = \sum\limits_{v = 0}^k {{{( - 1)}^{k - v}}} \left( \begin{array}{l} k \\ 0 \\ \end{array} \right)f(x + vh)[/tex]$$
.

Keywords

Fourier Series Fourier Coefficient Lipschitz Condition Trigonometric Polynomial Absolute Convergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Beurling, On the spectral synthesis of bounded functions. Acta Math. 81 (1949), 225–238.CrossRefGoogle Scholar
  2. [2]
    A. Beurling, Contraction and analysis of some convolution algebra. Ann. Inst. Fourier 14 (1964), 1–32.CrossRefGoogle Scholar
  3. [3]
    R. P. Boas, Beurling’s test for absolute convergence of Fourier series. Bull. Amer. Math. Soc. 66 (1960), 24–27.CrossRefGoogle Scholar
  4. [4]
    R. P. Boas, Inequalities for monotonic series. J. Math. Anal. Appl. 1 (1960), 121–126.CrossRefGoogle Scholar
  5. [5]
    P. L. Butzer und S. Pawelke, Ableitungen von trigonometrischen Approximationsprozessen. Acta Sci. Math. Szeged 28 (1967), 173–183.Google Scholar
  6. [6]
    G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Cambridge University Press 1934.Google Scholar
  7. [7]
    S. Igari, Sur les fonctions qui opèrent sur l’espace A 2 . Ann. Inst. Fourier 15 (1965), 525–536.CrossRefGoogle Scholar
  8. [8]
    M. Kinukawa, On the spectral synthesis of bounded functions. Proc. Amer. Math. Soc. 14 (1963), 468–471.CrossRefGoogle Scholar
  9. [9]
    A. A. Konyushkov, Best approximation by trigonometric polynomials and Fourier coefficients. Math. Sb. N. S. 86 (1958), 53–84.Google Scholar
  10. [10]
    L. Leindler, Über verschiedene Konvergenzarten trigonometrischer Reihen. III. Acta Sci. Math.Szeged 27 (1966), 205–215.Google Scholar
  11. [11]
    A. Ostrowski, Mathematische Miszellen. III. Über Nullstellen gewisser im Einheitskreis regulärer Funktionen und einige Sätze zur Konvergenz unendlicher Reihen. Jber. Deutsch. Math.-Verein. 34 (1926), 161–171.Google Scholar
  12. [12]
    S. B. Stëckin, On the order of the best approximation of continuous functions. Izv. Akad. Nauk SSSR 15 (1951), 219–242.Google Scholar
  13. [13]
    G. Sunouchi, On the convolution algebra of Beurling. Tôhoku Math. J. 19 (1967), 303–310.CrossRefGoogle Scholar
  14. [14]
    G. Sunouchi, Derivatives of a polynomial of best approximation. Jber. Deutsch. Math.-Verein. 70 (1968), 165–166.Google Scholar
  15. [15]
    O. Szász, Fourier series and mean moduli of continuity. Trans. Amer. Math. Soc. 42 (1937), 366–395.CrossRefGoogle Scholar
  16. [16]
    M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space. J. Math.Mech. 13 (1964), 407–479.Google Scholar
  17. [17]
    M. Zamansky, Classes de saturation de certains procédés d’approximation des séries de Fourier des fonctions continues et applications à quelques problèmes d’approximation. Ann. Sci. École Norm. Sup. 66 (1949), 19–93.Google Scholar
  18. [18]
    P. L. Butzer und K. Scherer, Über die Fundament aisätze der klassischen Approximationstheorie in abstrakten Räumen. These Proceedings, pp. 113–125.Google Scholar

Copyright information

© Springer Basel AG 1969

Authors and Affiliations

  • Gen-Ichirô Sunouchi
    • 1
  1. 1.Math. InstituteTôhoku UniversitySendaiJapan

Personalised recommendations