Advertisement

Abstract

Saturation theory is concerned with the following two problems: 1) To establish so-called saturation theorems for certain approximation processes; 2) to give simple characterizations of the corresponding saturation class. As in [18] we treat approximation processes generated by singular integrals of Fourier convolution type of functions f(x)∈L p (E n ), 1 ≦ p < ∞, where E n is the Euclidean n-space of vectors x = (x 1, ...,x n ) with the usual metric and inner product. In [18] special emphasis has been given to the characterization problem (problem 1) in the n-dimensional case, and the method to obtain saturation theorems has only been explained via one example, namely the generalized singular integral of Weierstrass. (See Theorem 1. 2 below.) The aim of the present note*) is to treat saturation theorems (problem 2) of general singular integrals in a unified way. Here we use elementary distributional methods (d.-methods) to the same extent as in [18] in order to provide a complete and rigorous treatment in the spaces L p (E n ),p > 2.

Keywords

Approximation Process Singular Integral Distributional Method Tauberian Theorem Bounded Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Aronszajn, F. Mulla and P. Szeptycki, On spaces of potentials connected with L p classes. Ann. Inst. Fourier (Grenoble) 13 (1963), 211–306.CrossRefGoogle Scholar
  2. [2]
    N. Aronszajn and K. T. Smith, Theory of Besselpotentials. Part I. Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475.CrossRefGoogle Scholar
  3. [3]
    H. Berens, Approximationssätze für Halbgruppenoperatoren in intermediären Räumen. Schr.Math. Inst. Univ. Münster 32 (1964), 59 pp. (Dissertation, Aachen).Google Scholar
  4. [4]
    H. Berens, Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachräumen. Lecture Notes in Mathematics 64, Springer, Berlin 1968.CrossRefGoogle Scholar
  5. [5]
    H. Berens and R. J. Nessel, Contributions to the theory of saturation for singular integrals in several variables. V. Saturation in L p (E n ), 2>p<∞. Nederl. Akad. Wetensch. Indag. Math. 31 (1969), 71–76.CrossRefGoogle Scholar
  6. [6]
    O. V. Besov, Investigation of a family of function spaces in connection with theorems of imbedding and extension. Amer. Math. Soc, Transi. 40 (1964), 85–125Google Scholar
  7. [7]
    S. Bochner, Harmonic analysis and the theory of probability. University of California Press Los Angeles 1955.Google Scholar
  8. [8]
    H. Buchwalter, Saturation et distributions. C. R. Acad. Sci. Paris 250 (1960), 3562–3564.Google Scholar
  9. [9]
    P. L. Butzer, Über den Grad der Approximation des Identitätsoperators durch Halbgruppen von linearen Operatoren und Anwendungen auf die Theorie der singulären Integrale. Math. Ann. 133 (1957), 410–425.CrossRefGoogle Scholar
  10. [10]
    P. L. Butzer, Sur le rôle de la transformation de Fourier dans quelques problèmes d’approximation. C. R. Acad. Sci. Paris 249 (1959), 2467–2469.Google Scholar
  11. [11]
    P. L. Butzer, Fourier transform methods in the theory of approximation. Arch. Ratl. Mech. Anal. 5 (1960), 390–415.CrossRefGoogle Scholar
  12. [12]
    P. L. Butzer and H. Berens, Semi-groups of operators and approximation. Grundlehren der Mathem. Wiss. 145, Springer, Berlin 1967.CrossRefGoogle Scholar
  13. [13]
    P. L. Butzer and E. Görlich, Characterizations of Favard classes for functions of several variables. Bull. Amer. Math. Soc. 74 (1968), 149–152.CrossRefGoogle Scholar
  14. [14]
    P. L. Butzer and R. J. Nessel, Contributions to the theory of saturation for singular integrals in several variables. I. General theory. Nederl. Akad. Wetensch. Indag. Math. 28 (1966), 515–531.Google Scholar
  15. [15]
    P. L. Butzer and R. J. Nessel, Fourier analysis and approximation, (in preparation).Google Scholar
  16. [16]
    A. P. Calderón, Lebesgue spaces of differentiable functions and distributions. Symp. Pure Math.Amer. Math. Soc, Providence, R. I., 4 (1961), 33–19.CrossRefGoogle Scholar
  17. [17]
    E. Görlich, Distributionentheoretische Methoden in der Saturationstheorie. Dissertation, Aachen 1967.Google Scholar
  18. [18]
    E. Görlich, Distributional methods in saturation theory. J. Approx. Theory 1 (1968), 111–136.CrossRefGoogle Scholar
  19. [19]
    E. Görlich und R. J. Nessel, Über Peano- und Riemann-Ableitungen in der Norm. Archiv Math. 18 (1967), 399–410.CrossRefGoogle Scholar
  20. [120]
    M. Kozima and G. Sunouchi, On the approximation and saturation by general singular integrals. Tôhoku Math. J. 20 (1968), 146–169.CrossRefGoogle Scholar
  21. [21]
    M. Kozima and G. Sunouchi, On the approximation and saturation by general singular integrals. Part. II. (In print).Google Scholar
  22. [22]
    R. J. Nessel, Contributions to the theory of saturation for singular integrals in several variables. II. Applications. III. Radial kernels. Nederl. Akad. Wetensch. Indag. Math. 29 (1967), 52–64; 67–73.Google Scholar
  23. [23]
    S. M. Nikolskii, On imbedding, continuation and approximation theorems for differentiable functions of several variables. Russian Math. Surveys 16 (1961), 55–104.CrossRefGoogle Scholar
  24. [24]
    L. Schwartz, Théorie des distributions. 2 vols. Hermann, Paris 1959.Google Scholar
  25. [25]
    H. S. Shapiro, Some Tauberian theorems with applications to approximation theory. Bull Amer.Math. Soc. 74 (1968), 500–504.CrossRefGoogle Scholar
  26. [26]
    H. S. Shapiro, A Tauberian theorem related to approximation theory. Acta Math. 120 (1968), 279–292.CrossRefGoogle Scholar
  27. [27]
    H. S. Shapiro, Smoothing and approximation of functions. (Revised edition of Matscience Report 55, Madras 1967), Van Nostrand Lecture Notes, Princeton 1969. (In print).Google Scholar
  28. [28]
    E. M. Stein, The characterization of functions arising as potentials. Bull. Amer. Math. Soc. 67 (1961), 102–104.CrossRefGoogle Scholar
  29. [29]
    G. Sunouchi, On the class of saturation in the theory of approximation II. Tôhoku Math. J. 12 (1960), 339–344.CrossRefGoogle Scholar
  30. [30]
    W. Trebels, Charakterisierung von Beziehungen zwischen Fouriertransformierten im E n. Abstracts of papers of the VII-th Austrian Math. Congress, Linz, Sec. 2. Austrian Math. Soc. 1968.Google Scholar

Copyright information

© Springer Basel AG 1969

Authors and Affiliations

  • E. Görlich
    • 1
  1. 1.Technological University of AachenGermany

Personalised recommendations