Skip to main content

Interpretation, Reliability and Accuracies of Parameters Deduced by the Spaced Antenna Method in Middle Atmosphere Applications

  • Chapter
Middle Atmosphere

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The spaced antenna method has proved to be an important and relatively inexpensive radar technique for making measurements of atmospheric wind velocities and other parameters. This discussion examines the reliability and accuracies of various parameters which can be measured with the technique.

After a brief introduction, a series of comparisons of winds measured by the spaced antenna method and simultaneously by other techniques are presented. It is concluded that when using weak partial reflections in the height range 0–100 km, the spaced antenna technique provides reliable estimates of the neutral air motion. Following this the assumptions made in applying the method are considered in more detail. The possibility of systematic errors and the likelihood of erroneous measurements are examined, and the accuracy of any particular measurement of wind speed is discussed. Previous objections to the technique are discussed, and in general shown to be invalid.

Other parameters apart from wind speeds can be measured with the spaced antenna technique, such as pattern scale, the rate of natural fading, and angles of arrival. The meanings of these parameters are discussed in terms of physical quantities such as turbulent energy dissipation rates, small-scale gravity wave velocity fluctuations, and aspect sensitivities of scatterers, and it is indicated when and how these derived parameters can be applied to deduce meaningful physical quantities. The need for great caution in making these interpretations is discussed; for example it is not always possible to use the rate of natural fading to estimate the intensity of turbulence, although in some cases this is possible. Finally, interferometric applications of spaced antenna systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G. W., Edwards, D. P., and Brosnahan, B. R. (1985), The imaging Doppler interferometer: Data analysis, Radio Sci. 20, 1481–1492.

    Article  Google Scholar 

  • Atlas, D., Advances in Geophysics (Academic Press, New York 1964) vol. 10, pp. 317–483.

    Google Scholar 

  • Awe, O. (1964a), Errors in correlation between time series, J. Atmos. Terr. Phys. 26, 1239–1255.

    Article  Google Scholar 

  • Awe, O. (1964b), Effects of errors in correlation on the analysis of the fading of radio waves, J. Atmos. Terr. Phys. 26, 1257–1271.

    Article  Google Scholar 

  • Ball, S. M. (1981), Upper atmosphere tide and gravity waves at mid- and low-latitudes, Ph.D. Thesis, University of Adelaide, Adelaide, Australia.

    Google Scholar 

  • Barnett, J. J., and Corney, M. (1985), Temperature data from satellites, MAP 16, 3–11 (eds. K. Labitzke, J. J. Barnett and B. Edward) (University of Illinois, Urbana, Ill., U.S.A.).

    Google Scholar 

  • Briggs, B. H. (1977), Ionospheric drifts, J. Atmos. Terr. Phys. 39, 1023–1033.

    Article  Google Scholar 

  • Briggs, B. H. (1980), Radar observations of atmospheric winds and turbulence: A comparison of techniques, J. Atmos. Terr. Phys. 42, 823–833.

    Article  Google Scholar 

  • Briggs, B. H. (1984), The analysis of spaced sensor records by correlation techniques, Handbook for MAP 13, (ed. R. A. Vincent), 166–186 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill).

    Google Scholar 

  • Briggs, B. H., and Maude, A. H. (1978), Spaced sensor observations of pattern motion, J. Geophys. Res. 83, 5309–5311.

    Article  Google Scholar 

  • Briggs, B. H., Phillips, G. J., and Shinn, D. H. (1950), The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. 63B, 106–121.

    Article  Google Scholar 

  • Briggs, B. H., and Vincent, R. A. (1973), Some theoretical considerations on remote probing of weakly scattering irregularities, Aust. J. Phys. 26, 805–814.

    Article  Google Scholar 

  • Brownlie, G. P., Dryburgh, L. G., and Whitehead, J. D. (1973), Measurement of the velocity of waves in the ionosphere: A comparison of the ray theory approach and diffraction theory, J. Atmos. Terr. Phys. 35, 2147–2162.

    Article  Google Scholar 

  • Chao, J. K., Kuo, F. S., Chu, Y. S., Fu, I. J., Röttger, J., and Liu, C. H. (1986), The first operation and results of the Chung-Li VHF radar, Handbook for MAP 20 (eds. S. A. Bowhill and B. Edwards), 359–363 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).

    Google Scholar 

  • Farley, D. T., Ierkic, H. M., and Fejer, B. G. (1981), Radar interferometry: A new technique for studying plasma turbulence in the ionosphere, J. Geophys. Res. 86, 1467–1472.

    Article  Google Scholar 

  • Fedor, L. S. (1967), A statistical approach to the determination of 3-dimensional ionospheric drifts, J. Geophys. Res. 72, 5401–5415.

    Article  Google Scholar 

  • Fedor, L. S., and Plywaski, W. (1972), The interpretation of ionospheric radio drift measurements. The effects of signal coupling among spaced sensor channels, J. Atmos. Terr. Phys. 34, 1285–1303.

    Article  Google Scholar 

  • Felgate, D. G. (1970), On the point source effect in the measurement of ionospheric drifts, J. Atmos. Terr. Phys. 32, 241–245.

    Article  Google Scholar 

  • Felgate, D. G., and Golley, N. G. (1971), Ionospheric irregularities and movements observed with a large antenna array, J. Atmos. Terr. Phys. 33, 1353–1369.

    Article  Google Scholar 

  • Fraser, G. J., and Kochanski, A. (1970), Ionospheric drifts from 64–108 km altitudes at Birdlings Flat, Annals. Geophys. 26, 675–687.

    Google Scholar 

  • Gage, K. S. (1983), On the measurement of vertical velocity by MST radar, Handbook for MAP 9 (eds. S. A. Bowhill and B. Edwards), 215–226 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).

    Google Scholar 

  • Gage, K. S., Carter, D. A., and Ecklund, W. L. (1981), The effect of gravity waves on specular echoes observed by the Poker Flat MST radar, Geophys. Res. Lett. 8, 599–602.

    Article  Google Scholar 

  • Golley, M., and Rossiter, D. (1970), Some tests of methods of analysis of ionospheric drift records using an array of 89 aerials, J. Atmos. Terr. Physics 32, 1215–1233.

    Article  Google Scholar 

  • Gregory, J. B., and Rees, D. T. (1971), Wind profiles of 100km near 53N during 1969, J. Atmos. Sci. 28, 1079–1082.

    Article  Google Scholar 

  • Harper, R., and Woodman, R. F. (1977), Preliminary multiheight radar observations of waves and winds in the mesosphere over Jimarca, J. Atmos. Terr. Phys. 39, 959–963.

    Article  Google Scholar 

  • Hines, C. O. (1960), Internal atmospheric gravity waves of ionospheric heights, Can. J. Phys. 38, 1441–1481.

    Article  Google Scholar 

  • Hines, C. O. (1968), Some consequences of gravity-wave critical layers in the upper atmosphere, J. Atmos. Terr. Phys. 30, 837–843.

    Article  Google Scholar 

  • Hines, C. O. (1972), Motions in the ionospheric D and E regions, Phil. Trans. Roy. Soc. Lond. A271, 457–471.

    Article  Google Scholar 

  • Hines, C. O. (1976), Corrections to papers on ionospheric drifts, J. Atmos. Terr. Phys. 38, 561–563.

    Article  Google Scholar 

  • Hines, C. O., and Rao, R. R. (1968), Validity of three-station methods of determining ionospheric motions, J. Atmos. Terr. Phys. 30, 979–993.

    Article  Google Scholar 

  • Hocking, W. K. (1979), Angular and temporal characteristics of partial reflections from the D-region of the ionosphere, J. Geophys. Res. 84, 845–852.

    Article  Google Scholar 

  • Hocking, W. K. (1983a), On the extraction of atmospheric turbulence parameters from radar backscatter Dopple spectra—I. Theory, J. Atmos. Terr. Phys. 45, 89–102.

    Article  Google Scholar 

  • Hocking, W. K. (1983b), Mesospheric turbulence intensities measured with a HF radar at 35° S II, J. Atmos. Terr. Phys. 45, 103–114.

    Article  Google Scholar 

  • Hocking, W. K. (1986), Observation and measurements of turbulence in the middle atmosphere with a VHF radar, J. Atmos. Terr. Phys. 48, 655–670.

    Article  Google Scholar 

  • Hocking, W. K. (1987), Radar studies of small-scale structure in the upper middle atmosphere and lower ionosphere, Adv. Space. Res. 7, 327–338.

    Article  Google Scholar 

  • Hocking, W. K., and Vincent, R. A. (1982), A comparison between HF partial reflection profiles from the D-region and simultaneous Langmuir Probe electron density measurement, J. Atmos. Terr. Phys. 44, 843–854.

    Article  Google Scholar 

  • Hodges, R. R., Jr. (1967), Generation of turbulence in the upper atmosphere by internal gravity waves, J. Geophys. Res. 72, 3455–3458.

    Article  Google Scholar 

  • Jones, K. L. (1982), Keeping track of radio echoes from the D-region, J. Atmos. Terr. Phys. 44, 55–60.

    Article  Google Scholar 

  • Koshelkov, P. (1985), Observed winds and temperatures in the Southern Hemisphere, MAP 16, 3–11 (eds. K. Labitzke, J. J. Barnett and B. Edwards) (University of Illinois, Urbana, Illinois, U.S.A.).

    Google Scholar 

  • Larsen, M. F., Kelly, M. C., and Gage, K. S. (1982), Turbulence spectra in the upper troposphere and lower stratosphere at periods between 2 hours and 40 days, J. Atmos. Sci. 39, 1035–1041.

    Google Scholar 

  • Manson, A. H., Meek, C. E., Massebeuf, M., Fellous, J. L., Elford, W. G., Vincent, R. A., Craig, R. L., Roper, R. G., Avery, S., Balsley, B. B., Fraser, G. J., Smith, M. J., Clark, R. R., Kato, S., Tsuda, T. Ebel, A. (1985), Mean winds of the upper middle atmosphere (60–110 km): A global distribution from radar systems (M. F., Meteor, VHF), Handbook for MAP 16, (eds. K. Labitzke, J. J. Barnett and B. Edwards), 239–253 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).

    Google Scholar 

  • Manson, A. H., Meek, C. E., and Gregory, J. B. (1981), Gravity waves of short period (5–90 min), in the lower thermosphere at 52°N (Saskatoon, Canada), 1978/1979, J. Atmos. Terr. Phys. 43, 35–44.

    Article  Google Scholar 

  • May, P. T. (1988), Statistical errors in the determination of wind velocities by the spaced antenna techniques, J. Atmos. Terr. Phys. 50, 21–32.

    Article  Google Scholar 

  • Meek, C. E., (1980), An efficient method of analysing ionospheric drifts data, J. Atmos. Terr. Phys. 42, 835–839.

    Article  Google Scholar 

  • Meek, C. E., Manson, A. H., and Gregory, J. B. (1979), Internal consistency analysis for partial and total reflection drifts data, J. Atmos. Terr. Phys. 41, 251–258.

    Article  Google Scholar 

  • Meek, C. E., and Manson, A. H. (1987), Medium frequency interferometry at Saskatoon, Canada, Physical Scripta 35, 917–921.

    Article  Google Scholar 

  • Pfister, W. (1971), The wavelike nature of inhomogeneities in the E-region, J. Atmos. Terr. Phys. 33, 999–1025.

    Article  Google Scholar 

  • Phillips, G. J., and Spencer, M. (1955), The effects of anisometric amplitude patterns in the measurement of ionospheric drifts, Proc. Phys. Soc. 68B, 481–492.

    Article  Google Scholar 

  • Röttger, J. (1980), Reflection and scattering of VHF radar signals from atmospheric reft-activity structures, Radio Sci. 15, 259–276.

    Article  Google Scholar 

  • Röttger, J. (1981a), Investigations of lower and middle atmosphere dynamics with spaced antenna drift radars, J. Atmos. Terr. Phys. 43, 277–292.

    Article  Google Scholar 

  • Röttger, J. (1981b), The capabilities of VHF radar for meteorological observations, Preprint of Nowcasting Symposium, Third Scientific Assembly of International Association of Meteorology and Atmospheric Physics, Hamburg, FRG, 17–28 Aug. 1981.

    Google Scholar 

  • Röttger, J. (1983), The correlation of winds measured with a spaced antenna VHF radar and radiosondes, Preprint, 21st Conf. on Radar Meteorology, 97–99 (publ. by Amer. Meteor. Soc, Boston, Mass.).

    Google Scholar 

  • Röttger, J. (1984), Signal statistics of the radar echoes-angle of arrival statistics, Handbook for MAP 14 (eds. S. A. Bowhill and B. Edwards), 84–87 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).

    Google Scholar 

  • Röttger, J. (1987), VHF radar measurements of small-scale and meso-scale dynamical processes in the middle atmosphere, Phil. Trans. R. Soc. Lond. A323, 611–628.

    Article  Google Scholar 

  • Röttger, J., and Ierkic, H. M. (1985), Postset beam steering and interferometer applications of VHF radars to study winds, waves, and turbulence in the lower and middle atmosphere, Radio Sci. 20, 1461–1480.

    Article  Google Scholar 

  • Röttger, J., Rastogi, P. K., Woodman, R. F. (1979), High resolution VHF radar observations of turbulence structures in the mesosphere, Geophys. Res. Letts. 6, 617–620.

    Article  Google Scholar 

  • Röttger, J., and Czechowsky, P. (1980), Tropospheric and stratospheric wind measurements with the spaced antenna drifts technique and the Doppler beam swinging technique using a VHF radar, Preprint, 19th Conf. on Radar Meteorology of Am. Met. Soc., Miami, FL, USA, 15–18 Apr., pp. 577–584.

    Google Scholar 

  • Röttger, J., and Vincent, R. A. (1978), VHF radar studies of tropospheric velocities and irregularities using spaced antenna techniques, Geophys. Res. Lett. 5, 917–920.

    Article  Google Scholar 

  • Royrvik, O. (1982), Drift and aspect sensitivity of scattering irregularities in the upper equatorial E region, J. Geophys. Res. 87, 8338–8342.

    Article  Google Scholar 

  • Stubbs, T. J. (1973), The measurement of winds in the D region of the ionosphere by the use of partially reflected radiowaves, J. Atmos. Terr. Phys. 35, 909–919.

    Article  Google Scholar 

  • Stubbs, T. J. (1977), A study of ground diffraction parameters associated with D-region partial reflections, J. Atmos. Terr. Phys. 39, 589–594.

    Article  Google Scholar 

  • Stubbs, T. J., and Vincent, R. A. (1973), Studies of D-region drifts during the winters of 1970–1972, Australian J. Phys. 26, 645–660.

    Article  Google Scholar 

  • VanZandt, T. E., and Vincent, R. A. (1983), Is VHF Fresnel reflectivity due to low frequency buoyancy waves? Handbook for MAP 9 (eds. S. A. Bowhill and B. Edwards), 78–80 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).

    Google Scholar 

  • Vincent, R. A., and Ball, S. M. (1981), Mesospheric winds at low and mid-latitude in the Southern Hemisphere, J. Geophys. Res. 86, 9159–9169.

    Article  Google Scholar 

  • Vincent R. A., and Reid, I. M. (1983), HF Doppler measurements of mesospheric gravity wave momentum fluxes, J. Atmos. Sci. 40, 1321–1333.

    Article  Google Scholar 

  • Vincent, R. A., and Röttger, J. (1980), Spaced antenna VHF radar observations of tropospheric velocities and irregularities, Radio Sci. 15, 319–335.

    Article  Google Scholar 

  • Vincent, R. A., Stubbs, T. J., Pearson, P. H. O., Lloyd, K. H., and Low, C. H. (1977), A comparison of partial reflection drifts with winds determined by rocket techniques, J. Atmos Terr. Phys. 39, 813–821.

    Article  Google Scholar 

  • Vincent, R.A., May, P. T., Hocking, W. K., Elford, W. G., Candy, B. H., and Briggs, B. H. (1987), First results with the Adelaide VHF radar: Spaced antenna studies of tropospheric winds, J. Atmos. Terr. Phys. 49, 353–366.

    Article  Google Scholar 

  • Weinstock, J. (1981), Energy dissipation rates of turbulence in the stable free atmosphere, J. Atmos. Sci. 38, 880–883.

    Article  Google Scholar 

  • Wright, J. W., Glass, M., and Spizzichino, A. (1976), The interpretation of ionospheric radio drift measurements—viii. Direct comparisons of meteor radar winds and Kinesonde measurements: Mean and random motions, J. Atmos. Terr. Phys. 38, 713–729.

    Article  Google Scholar 

  • Wright, J. W., and Pitteway, M. L. V. (1978), Computer simulation of ionospheric radio drift measurements and their analysis by correlation methods, Radio Sci. 13, 189–210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Basel AG

About this chapter

Cite this chapter

Hocking, W.K., May, P., Röttger, J. (1989). Interpretation, Reliability and Accuracies of Parameters Deduced by the Spaced Antenna Method in Middle Atmosphere Applications. In: Plumb, R.A., Vincent, R.A. (eds) Middle Atmosphere. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5825-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5825-0_25

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2290-8

  • Online ISBN: 978-3-0348-5825-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics