Advertisement

A Theory of Enhanced Saturation of the Gravity Wave Spectrum Due to Increases in Atmospheric Stability

  • Thomas E. VanZandt
  • David C. Fritts
Chapter
  • 64 Downloads
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

In this paper we consider a vertical wavenumber spectrum of vertically propagating gravity waves impinging on a rapid increase in atmospheric stability. If the high-wavenumber range is saturated below the increase, as is usually observed, then the compression of vertical scales as the waves enter a region of higher stability results in that range becoming supersaturated, that is, the spectral amplitude becomes larger than the saturation limit. The supersaturated wave energy must then dissipate in a vertical distance of the order of a wavelength, resulting in an enhanced turbulent energy dissipation rate. If the wave spectrum is azimuthally anisotropic, the dissipation also results in an enhanced vertical divergence of the vertical flux of horizontal momentum and enhanced wave drag in the same region. Estimates of the enhanced dissipation rates and radar reflectivities appear to be consistent with the enhancements observed near the high-latitude summer mesopause. Estimates of the enhanced mean flow acceleration appear to be consistent with the wave drag that is needed near the tropopause and the high-latitude summer mesopause in large-scale models of the atmosphere. Thus, this process may play a significant role in determining the global effects of gravity waves on the large-scale circulation.

Key words

Gravity waves saturation wave breaking energy dissipation momentum flux mean flow acceleration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D. G., and M. E. McIntyre (1976), Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration, J. Atmos. Sci. 33, 2031–1048.CrossRefGoogle Scholar
  2. Balsley, B. B., and D. A. Carter (1982), The spectrum of atmospheric velocity fluctuations at 8 and 86km, Geophys. Res. Lett. 9, 465–468.CrossRefGoogle Scholar
  3. Balsley, B. B., W. L. Ecklund, and D. C. Fritts (1983), VHF echoes from the high-latitude mesosphere and lower thermosphere: Observations and interpretations, J. Atmos. Sci 40, 2451–2466.CrossRefGoogle Scholar
  4. Balsley, B. B., W. L. Ecklund, and D. C. Fritts, VHF echoes from the arctic mesosphere and lower thermosphere, Part I: Observations, in Dynamics of the Middle Atmosphere (ed. J. R. Holton and T. Matsuno) (Terra Scientific Pub. Co. 1984) pp. 77–96.CrossRefGoogle Scholar
  5. Balsley, B. B., and R. Garello (1985), The kinetic energy density in the troposphere, stratosphere, and mesosphere: A preliminary study using the Poker Flat MST radar in Alaska, Radio Sci. 20, 1355–1361.CrossRefGoogle Scholar
  6. Booker, J. R., and F. P. Bretherton (1967), The critical layer for internal gravity waves in a shear flow, J. Fluid Mech. 27, 513–539.CrossRefGoogle Scholar
  7. Boyd, J. P. (1976), The noninteraction of waves with the zonally-averaged flow on a spherical earth and the inter-relationships of eddy fluxes of energy, heat and momentum, J. Atmos. Sci 33, 2285–2291.CrossRefGoogle Scholar
  8. Bretherton, F. P., and C. J. R. Garrett (1969), Wavetrains in inhomogeneous moving media, Proc. Roy. Soc. London A302, 529–554.Google Scholar
  9. Broutman, D. (1982), The interaction of short-wavelength internal waves with a background current, Ph.D. Thesis, Scripps Inst. of Ocean, Univ. of California, San Diego.Google Scholar
  10. Chao, W. C., and M. R. Schoeberl (1984), A note on the linear approximation of gravity wave saturation in the mesosphere, J. Atmos. Sci 41, 1893–1898.CrossRefGoogle Scholar
  11. Czechowsky, P., and R. Rüster (1985), Power spectra of mesospheric velocities in polar regions, Handbook for MAP 18, 207–211.Google Scholar
  12. Desaubies, Y. J. F. (1976), Analytical representation of internal wave spectra, J. Phys. Oceanogr. 6, 976–981.CrossRefGoogle Scholar
  13. Dewan, E. M. (1979), Stratospheric wave spectra resembling turbulence, Science 204, 832–835.CrossRefGoogle Scholar
  14. Dewan, E. M., and R. E. Good (1986), Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res. 91, 2742–2748.CrossRefGoogle Scholar
  15. Dewan, E. M., N. Grossbard, A. F. Quesada, and R. E. Good (1984), Spectral analysis of 10m resolution scalar velocity profiles in the stratosphere, Geophys. Res. Lett. 11, 80–83, and Correction to “Spectral analysis of...”, Geophys. Res. Lett. 11, 624.CrossRefGoogle Scholar
  16. Dunkerton, T. J. (1982), Stochastic parameterization of gravity wave stresses, J. Atmos. Sci. 29, 1711–1725.CrossRefGoogle Scholar
  17. Ecklund, W. L., and B. B. Balsley (1981), Long-term observations of the arctic mesosphere with the MST radar at Poker Flat Alaska, J. Geophys. Res. 86, 7775–7780.CrossRefGoogle Scholar
  18. Fritts, D. C. (1984), Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys. Space Phys. 22, 275–308.CrossRefGoogle Scholar
  19. Fritts, D. C., and H.-G. Chou (1987), An investigation of the vertical wavenumber and frequency spectra of gravity wave motions in the lower stratosphere, J. Atmos. Sci. 44, 3610–3624.CrossRefGoogle Scholar
  20. Fritts, D. C., and T. J. Dunkerton (1985), Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci. 42, 549–556.CrossRefGoogle Scholar
  21. Fritts, D. C., and P. K. Rastogi (1985), Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci. 20, 1247–1277.CrossRefGoogle Scholar
  22. Fritts, D. C., T. Tsuda, T. Sato, S. Fukao, and S. Kato (1988), Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere, J. Atmos. Sci. 45, 1741–1759.CrossRefGoogle Scholar
  23. Fritts, D. C., and R. A. Vincent (1987), Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave/tidal interaction model, J. Atmos. Sci. 44, 605–619.CrossRefGoogle Scholar
  24. Fukao, S., T. Sato, T. Tsuda, S. Kato, M. Inaba, and I. Kimura (1988), VHF Doppler radar determination of the momentum flux in the upper troposphere and lower stratosphere: Comparison between the three- and four-beam methods, J. Atmos. Oceanic Tech. 5, 57–69.CrossRefGoogle Scholar
  25. Garcia, R. R., and S. Solomon (1985), The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res. 90, 3850–3868.CrossRefGoogle Scholar
  26. Garrett, C. J. R., and W. H. Munk (1972), Space-time scales of internal waves, Geophys. Astrophys. Fluid Dyn. 3, 225–235.CrossRefGoogle Scholar
  27. Garrett, C. J. R., and W. H. Munk (1975), Space-time scales of internal waves: A progress report, J. Geophys. Res. 80, 291–297.CrossRefGoogle Scholar
  28. Hill, R. J., and S. F. Clifford (1978), Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation, J. Opt. Soc. Am. 68, 892–899.CrossRefGoogle Scholar
  29. Hocking, W. K. (1985), Turbulence in the region 80–120km, MAP Handbook 16, 290–304.Google Scholar
  30. Holton, J. R. (1982), The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci. 39, 791–799.CrossRefGoogle Scholar
  31. Holton, J. R. (1983), The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci. 40, 2497–2507.CrossRefGoogle Scholar
  32. Lindzen, R. S. (1981), Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res. 86, 9707–9714.CrossRefGoogle Scholar
  33. Maekawa, Y., S. Fukao, I. Hirota, M. P. Sulzer, and S. Kato (1987), Some further results on long-term mesospheric and lower thermospheric wind observation by the Arecibo radar, J. Atmos. Terrest. Phys. 49, 63–71.CrossRefGoogle Scholar
  34. McComas, C. H., and P. Müller (1981), The dynamic balance of internal waves, J. Phys. Ocean. 11, 970–986.CrossRefGoogle Scholar
  35. McFarlane, N. A. (1987), The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci. 44, 1775–1800.CrossRefGoogle Scholar
  36. Miyahara, S., Y. Hayashi, and J. D. Mahlman (1986), Interactions between gravity waves and the planetary scale flow simulated by the GFDL “SKYHI” general circulation model, J. Atmos. Sci. 43, 1844–1861.CrossRefGoogle Scholar
  37. Nurmi, P. (1983), An analysis of the budgets of zonal momentum and kinetic energy in the Northern Hemisphere during the first special observing period of the FGGE, Rep. No. 24, Dept. of Meteorology, University of Helsinki.Google Scholar
  38. Ottersten, H. (1969), Atmospheric structure and radar backscattering in clear air, Radio Sci. 12, 1179–1193.CrossRefGoogle Scholar
  39. Palmer, T. N., G. J. Shutts, and R. Swinbank (1986), Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization, Quart. J. Roy. Met. Soc. 112, 1001–1040.CrossRefGoogle Scholar
  40. Reid, I. M., and R. A. Vincent (1987), Measurements of mesospheric gravity wave momentum fluxes and mean flow accelerations at Adelaide, Australia, J. Atmos. Terrest. Phys. 49, 443–460.CrossRefGoogle Scholar
  41. Scheffler, A. O., and C. H. Liu (1985), On observation of gravity wave spectra in the atmosphere using MST radars, Radio Sci. 20, 1309–1322.CrossRefGoogle Scholar
  42. Schoeberl, M. R., D. F. Strobel, and J. P. Apruzese (1983), A numerical model of gravity wave breaking and stress in the middle atmosphere, J. Geophys. Res. 88, 5249–5259.CrossRefGoogle Scholar
  43. Smith, S. A., D. C. Fritts, and T. E. VanZandt (1987), Evidence for a saturated spectrum of atmospheric gravity waves, J. Atmos. Sci. 44, 1404–1410.CrossRefGoogle Scholar
  44. Strubel, D. F., J. P. Apruzese, and M. R. Schoeberl (1985), Energy balance constraints on gravity wave induced eddy diffusion in the mesosphere and lower thermosphere, J. Geophys. Res. 90, 13,067–13,072.Google Scholar
  45. Tanaka, H. (1986), A slowly varying model of the lower stratospheric zonal wind minimum induced by mesoscale mountain wave breakdown, J. Atmos. Sci. 43, 1881–1892.CrossRefGoogle Scholar
  46. Theon, J. S., W. Nordberg, L. B. Katchen, and J. J. Horvath (1967), Some observations on the thermal behavior of the mesosphere, J. Atmos. Sci. 24, 428–438.CrossRefGoogle Scholar
  47. Thomas, R. J., C. A. Barth, and S. Solomon (1984), Seasonal variations of ozone in the upper mesosphere and gravity waves, Geophys. Res. Lett. 7, 673–676.CrossRefGoogle Scholar
  48. Trout, D., and H. A. Panofsky (1969), Energy dissipation near the tropopause, Tellus 21, 355–358.CrossRefGoogle Scholar
  49. Ulwick, J. C., K. D. Baker, M. C. Kelley, B. B. Balsley, and W. L. Ecklund (1988), Comparison of simultaneous MST radar and electron density probe measurements during STATE, J. Geophys. Res. 93, 6989–7000.CrossRefGoogle Scholar
  50. VanZandt, T. E. (1982), A universal spectrum of buoyancy waves in the atmosphere, Geophys. Res. Lett. 9, 575–578.CrossRefGoogle Scholar
  51. VanZandt, T. E. (1985), A model for gravity wave spectra observed by Doppler sounding systems, Radio Sci. 20, 1323–1330.CrossRefGoogle Scholar
  52. Vincent, R. A. (1984), Gravity wave motions in the thermosphere, J. Atmos. Terrest. Phys. 46, 119–128.CrossRefGoogle Scholar
  53. Vincent, R. A., and I. M. Reid (1983), HE Doppler measurements of mesospheric momentum fluxes, J. Atmos. Sci. 40, 1321–1333.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1989

Authors and Affiliations

  • Thomas E. VanZandt
    • 1
  • David C. Fritts
    • 2
  1. 1.Aeronomy LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA
  2. 2.Geophysical Institute and Department of PhysicsUniversity of AlaskaFairbanksUSA

Personalised recommendations