Skip to main content

Low Temperature Isothermal Pyrolysis of Cellulose

  • Chapter
Thermal Analysis

Abstract

By providing continuous weight measurement, thermogravimetry, even for isothermal experiments, offers a major advantage over the classical methods of determining weight-change curves in complex pyrolysis reactions. Thus, even minor weight changes, readily detectable on a continuous record, furnish clues concerning the reaction sequences and indicate conditions under which confirmatory experiments may be undertaken. Unfortunately, such perturbations are frequently ignored, being considered part of the “experimental error” which they often represent in the traditional experiments. This paper illustrates the utility of looking at the minor weight deviations, too large to be random experimental error, in a 1,000-hour isothermal pyrolysis experiment on high purity cellulose paper at 226°C. Resolution of the curve into the minimum number of consecutive and competing reactions required to fit within instrumental accuracy yields previously unrecognized characteristics of the pyrolysis behavior, applicable at other temperatures as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. E. Newkirk and E. L. Simons, NATAS Notes, 3 (1), 4 (1971).

    Google Scholar 

  2. A. Broido and F. J. Kilzer, Fire Res. Abs. and Rev. 5, 157 (1963).

    Google Scholar 

  3. S. L. Madorsky, Thermal Degradation of Organic Polymers, Chapter XII, interscié ce, New York 7964).

    Google Scholar 

  4. F. Shafizadeh, Advances in Carbohydrate Chemistry, 23, 419 (1968).

    Article  Google Scholar 

  5. A. Broido, Pyrodynamics, 4, 243 (1966).

    Google Scholar 

  6. M. Weinstein and A. Broido, Combustion Science and Technology, 1, 287 (1970).

    Article  Google Scholar 

  7. Anne E. Lipska and W. J. Parker, J. Applied Polymer Sci., 10, 1439 (1966).

    Article  Google Scholar 

  8. A. Broido and M. Weinstein, Combustion Science and Technology, 1, 279 (1970).

    Article  Google Scholar 

  9. F. J. Kilzer and A. Broido, Pyrodynamics, 2, 151 (1965).

    Google Scholar 

  10. A. Broido, A. J. Son, A. C. Ouano, and E. M. Barrall, II, Western States Section, Combustion Institute Paper 71–4 (1971).

    Google Scholar 

  11. M. M. Tang and R. Bacon, Carbon, 2, 211 (1964).

    Article  Google Scholar 

  12. Y. Houminer and S. Patai, Tetrahedron Letters, 14, 1297 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer Basel AG

About this chapter

Cite this chapter

Broido, A., Weinstein, M. (1972). Low Temperature Isothermal Pyrolysis of Cellulose. In: Wiedemann, H.G. (eds) Thermal Analysis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5775-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5775-8_25

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5777-2

  • Online ISBN: 978-3-0348-5775-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics