Advertisement

Geometry of numbers

  • Peter M. Gruber

Abstract

The geometry. of numbers can be traced back at least to Lagrange [1773], who proved important results about quadratic forms in two variables. The proofs as well as the formulations of results were purely arithmetic. Reviewing a book of Seeber [1831B] on ternary quadratic forms, Gauß [1831] introduced for the first time geometric methods. Geometric methods were predominant in the work of Dirichlet [1850]. On the other hand Hermite [1850] and Korkine and Zolotareff [1872], [1873], [1877] gave arithmetic proofs for their results on quadratic forms in more than three variables. Finally Minkowski [1891] noticed that a simple geometric argument which he used to give a new proof of a theorem of Hermite could be adapted to much more general situations. Then Minkowski [1896B], [7B], [11B] started a systematic study of geometric methods in number theory and called this new branch of number theory geometry of numbers. Many results and most concepts of modern geometry of numbers have their origin in the work of Minkowski. After Minkowski many eminent mathematicians made contributions to this field. In order to avoid controversies I will not mention any of them. Geometry of numbers is closely related to other branches of number theory such as algebraic number theory and Diophantine approximation. A flourishing offspring is discrete geometry, developed mainly by Fejes Tóth and his school.

Keywords

Quadratic Form Convex Body Soviet Math Diophantine Approximation Lattice Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  1. [74B]
    Baranovskii, E.P., D.I. Moldavanskii and A.I. Ceremisin, ed.: Studies in the geometry of positive quadratic forms. Ivanov Gos Univ. Ucen Zap 89 (1974).Google Scholar
  2. [69B]
    Borel, A.: Introduction aux groupes arithmetiques. Paris: Hermann 1969.Google Scholar
  3. [78B]
    Brown, H., R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus: Crystallographic groups of four-dimensional space. New York: J. Wiley 1978.Google Scholar
  4. [59B]
    Cassels, J.W.S.: An introduction to the geometry of numbers. Grundl. Math. Wiss. 99. Berlin: Springer 1959, 1972.Google Scholar
  5. [63B]
    Coxeter, H.S.M.: Regular Polytopes. New York, London: MacMillan 1963, New York: Dover 1973.Google Scholar
  6. B]: Introduction to geometry, 2nd ed., New York: J. Wiley 1969.Google Scholar
  7. [77B]
    Davenport, H.: Collected Works I–IV. New York, London: Academic Press 1977.Google Scholar
  8. [74B]
    Ehrhart, E.: Polynomes arithmetiques et methode des polèdres en combinatoire. Straßbourg: Institute de Recherche Mathematique Avance 1974.Google Scholar
  9. [1885B]
    Fedorov, E.S.: Elements of the study of figures. St. Petersburg: Akad. Nauk 1885, Leningrad: Izdat. Akad. Nauk SSSR 1953.Google Scholar
  10. [53B]
    Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum, Grundl. Math. Wiss. 65. Berlin, Göttingen, Heidelberg: Springer 1953, 1972.Google Scholar
  11. [64B]
    Fejes Tóth, L.: Regular figures. Oxford: Pergamon Press 1964, Budapest: Akadémiai Kiado 1965.Google Scholar
  12. [75B]
    Freiman, G.A.: Diophantine approximation and geometry of numbers (Markov problem). Kalinin: Kalinin. Gos. Univ. 1975.Google Scholar
  13. [73B]
    Freiman, G.A., A.M. Rubinov and E.V. Novoselov: Number-theoretic studies in the Markov spectrum and in the structural theory of set addition. Moscow: Kalinin. Gos. Univ. 1973.Google Scholar
  14. [77B]
    Hammer, J.: Unsolved problems concerning lattice points. Res. notes in Math. 15. London, San Francisco, Melbourne: Pitman 1977.Google Scholar
  15. [39B]
    Hancock, H.: Developments of the Minkowski geometry of numbers I, II. New York: MacMillan 1939, Dover 1964.Google Scholar
  16. B] Keller, O.-H.: Geometrie der Zahlen. Enz. Math. Wiss. 1/2, 27.Google Scholar
  17. [36B]
    Leipzig, B.G., Teubner J.D., Koksma, J.F.: Diophantische Approximationen. Ergebn. Math. Grenzgeb. 4. Berlin: Springer 1936, New York: Chelsea 1950, Berlin, New York: Springer 1974.Google Scholar
  18. [69B]
    Lekkerkerker, G.C.: Geometry of numbers. Bibl. Math. 8. Groningen: Wolters-Noordhoff et Amsterdam: North-Holland 1969.Google Scholar
  19. [74B]
    Le Veque, W.J.: Reviews in number theory III, Providence, R.I.: Amer. Math. Soc. 1974.Google Scholar
  20. [50B]
    Mahler, K.: The geometry of numbers. Duplicated lectures. Boulder 1950.Google Scholar
  21. [73B]
    Malysev A.V., ed.: Investigations in number theory 2, Zap. Naucn. Sem. Leningrad Otdel. Mat. Inst. Steklov 33 ( 1973 ), Leningrad: Izdat. “Nauka” 1973Google Scholar
  22. [73B]
    Malysev A.V., ed.: Investigations in number theory 2, J. Soviet Math. 6 (1976).Google Scholar
  23. [77B]
    Malysev A.V., ed.: Investigations in number theory 4, Zap. Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 67 ( 1977 ) Leningrad: Izdat. “Nauka” 1977.Google Scholar
  24. [73B]
    Milnor, J., and D. Husemoller: Symmetric bilinear forms. New York, Berlin, Heidelberg: Springer 1973.Google Scholar
  25. [1896B]
    Minkowski, H.: Geometrie der Zahlen. Leipzig: Teubner 1896, 1910, 1925, New York: Chelsea 1953, Johnson Reprint Corp. 1968.Google Scholar
  26. [7B]
    Minkowski, H.: Diophantische Approximationen. Leipzig, Berlin: Teubner 1907, 1927, New York: Chelsea 1957, Würzburg: Physika-Verlag 1961.Google Scholar
  27. [11B]
    Minkowski, H.: Gesammelte Abhandlungen I,II. Leipzig, Berlin: Teubner 1911.Google Scholar
  28. [63B]
    Niven, I.: Diophantine Approximations. New York: Interscience 1963.Google Scholar
  29. [64B]
    Rogers, C.A.: Packing and covering, Cambridge tract 54. Cambridge: Cambridge Univ. Press 1964.Google Scholar
  30. [76B] Ryskov, S.S., and E.P. Baranovskii: C-types of n-dimensional lattices and finite-dimensional primitive parallelohedra (with applications to covering theory).
    Trudy Mat. Inst. Steklov 137 ( 1976 ). Moscow: Izdat. “Nauka” 1976.Google Scholar
  31. [70B]
    Schmidt, W.M.: Lectures on Diophantine approximation. Duplicated lectures. Boulder 1970.Google Scholar
  32. [1831]
    Seeber, L.A.: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen. Thesis: Freiburg 1831.Google Scholar
  33. [75B]
    Stogrin, M.I.: Regular Dirichlet-Voronoi partitions of the second triclinic groups. Trudy Mat. Inst. Steklov 123 (1973), Moscow: Izdat. “Nauka” 1973 = (trans. Primrose) Providence, R.I.: Amer. Math. Soc. 1975.Google Scholar
  34. [75B]
    Stojan, Ju.G.: Placing of geometrical objects. Kiev: Izdat “Naukova Dumka” 1975.Google Scholar
  35. [76B]
    Stojan, Ju.G.: Methods and algorithms for the placing of plane geometric objects. Kiev: Izdat. “Naukova Dumka” 1976.Google Scholar
  36. [52B]
    Voronoi, G.F.: Collected works (Russ.), I–III. Kiev: Izdat. Akad. Nauk Ukr. SSR. 1952.Google Scholar
  37. [68B]
    Waerden, B.L. van der, and H. Gross, ed.: Studien zur Theorie der quadratischen Formen. Math. Reihe 34. Basel, Stuttgart: Birkäuser 1968.Google Scholar
  38. [60B]
    Watson, G.L.: Integral quadratic forms. Cambridge: Cambridge Univ. Press 1960.Google Scholar

Survey articles

  1. [60S]
    Bambah, R.P.: Some problems in the geometry of numbers. J. Indian Math. Soc. (N.S.) 24 (1960), 157–172 (1961).Google Scholar
  2. [70S]
    Bambah, R.P.: Packing and covering. Math. Student 38 (1970), 133–138.Google Scholar
  3. [71S]
    Bambah, R.P.: Geometry of numbers, packing and covering and discrete geometry. Math. Student 39 (1971), 117–129.Google Scholar
  4. [69S]
    Baranovskii, E.P.: Packings, coverings, partitionings, and certain other distributions in spaces of constant curvature. Itogi Nauki Ser. Mat. Algebra, Topologija, Geometrija 1967 (1969), 189–225Google Scholar
  5. [69S]
    Baranovskii, E.P.: Packings, coverings, partitionings, and certain other distributions in spaces of constant curvature.Progress Math. 9 (1971), 209–253.Google Scholar
  6. [50S]
    Chabauty, A.: Sur les problèmes de géométrie des nombres. Algèbre et Théorie des Nombres 24, 27–28. Paris: Centre National de la Recherche Sci. 1950.Google Scholar
  7. [62S]
    Chabauty, A.: Introduction à la géométrie des nombres. Enseignement Math. (2) 8 (1962), 41–53.Google Scholar
  8. [47S]
    Davenport, H.: The geometry of numbers. Math. Gaz. 31 (1947), 206–210.Google Scholar
  9. [52S]
    Davenport, H.: Recent progress in the geometry of numbers. Proc. Int. Congress Math. (Cambridge, Mass. 1950), I, 166–174, Providence: Amer. Math. Soc. 1952.Google Scholar
  10. [64S]
    Davenport, H.: Problems of packing and covering. Rend. Sem. Mat. Univ. e Politecn. Torino 24 (1964/65), 41–48.Google Scholar
  11. [73S]
    Delone, B.N., R.V. Galiulin and M.I. Stogrin,: On the Bravais types of lattices. Itogi Nauk. Tekhn. 2 (1973), 120–254Google Scholar
  12. [73S]
    Delone, B.N., R.V. Galiulin and M.I. Stogrin: On the Bravais types of lattices. J. Soviet Math. 4 (1975), 79–156.Google Scholar
  13. [62S]
    Fejes-Tóth, L.: Neure Ergebnisse in der diskreten Geometrie. Eletn. Math. 17 (1962), 25–36.Google Scholar
  14. [67S]
    Fejes-Tóth, L.: Packings and coverings in the plane. Proc. Colloqu. Cony. (Copenhagen 1965 ), 7887, Copenhagen: K¢benhavns Univ. Mat. Inst. 1967.Google Scholar
  15. [67S]
    Few, L.: Multiple packing of spheres: a survey. Proc. Colloquium Convexity (Copenhagen 1965 ), 88–93, Copenhagen: K¢benhavns Univ. Mat. Inst. 1967.Google Scholar
  16. [68S]
    Grasseli, J.: Fundamental concepts of the geometry of numbers. Obzornik Mat. Fiz. 15 (1968), 1–9.Google Scholar
  17. [75S]
    Florian, A.: Neuere Ergebnisse in der diskreten Geometrie. 7. Steiermärk. Math. Sympos. (Graz 1975), Ber. 45, 21 pp. Graz: Forschungszentrum 1975.Google Scholar
  18. [54S]
    Hlawka, E.: Grundbegriffe der Geometrie der Zahlen. J.-ber. deutsch. Math. Verein. 57 (1954), 37–55.Google Scholar
  19. [54S]
    Hlawka, E.: Das inhomogene Problem in der Geometrie der Zahlen. Proc. Int. Congr. Math. (Amsterdam 1954), III, 20–27.Google Scholar
  20. [61S]
    Hlawka, E.: Überdeckung durch konvexe Scheiben. S.-Ber. Berlin. Math. Ges. 1961–64, 28–36.Google Scholar
  21. [63S]
    Hlawka, E.: Zur Geometrie der Zahlen. Jahrb. Akad. Wiss. Göttingen 1963, 23–29.Google Scholar
  22. [80S]
    Hlawka, E.: 90 Jahre Geometrie der Zahlen. Jahrb. Überblicke Math. 1980. To appear.Google Scholar
  23. S] Lekkerkerker, G.C.: Packing and coverings of figures in the plane. (Dutch). Amsterdam: Math. Centrum afd. Zuivere Wisk. 1964, ZW-008 7 pp.Google Scholar
  24. [71S]
    Mahler, K.: A lecture on the geometry of numbers of convex bodies. Bull. Amer. Math. Soc. 77 (1971), 319–325.Google Scholar
  25. [77S] Malysev, A.V.: The Markoff and Lagrange spectra (survey of publications).
    Zap. Nauén. Sem. Leningrad Otdel. Mat. Inst. Steklov 67 (1977), 5–38.Google Scholar
  26. [74S]
    Malysev, A.V., and E.V. Podsypanin: Analytic methods in the theory of Diophantine equations and inequalities with a large number of unknowns. Itogi Nauk. Tekhn. Algebra, Topologija, Geometrija 12 (1974), 5–50Google Scholar
  27. [74S]
    Malysev, A.V., and E.V. Podsypanin: Analytic methods in the theory of Diophantine equations and inequalities with a large number of unknowns. J. Soviet Math. 5 (1976), 753–785.Google Scholar
  28. [77S]
    Melnyk, T.W., O. Knop and W.R. Smith: Extrema arrangements of points and unit charges on a sphere: equilibrium configurations revisited, Canad. J. Chem. 55 (1977), 1745–1761.Google Scholar
  29. [76S]
    Milnor, J.: Hilbert’s problem 18: On crystallographic groups, fundamental domains and on sphere packing. Proc. Sympos. Pure Math. 28 (De Kalb 1974 ), 491–506, Providence, Rh.I.: Amer. Math. Soc. 1976.Google Scholar
  30. [46S]
    Mordell, L.J.: Geometry of numbers. Proc. First Canadian Math. Congress (Montreal 1945 ), 265–284, Toronto: Univ. of Toronto Press 1946.Google Scholar
  31. [74S]
    Rogers, C.A.: Probabilistic and combinatorial methods in the study of the geometry of Euclidean spaces. Proc. Int. Congress Math. (Vancouver 1974 ) 1, 497–500.Google Scholar
  32. [74S]
    Ryskov, S.S.: Geometry of positive quadratic forms. Proc. Intern. Congress of Math. (Vancouver 1974) 1, 501–506Google Scholar
  33. [74S]
    Ryskov, S.S.: Geometry of positive quadratic forms. Amer. Math. Soc. Transl. II Ser. 109 (1977), 27–32.Google Scholar
  34. [75S]
    Saaty, T.L., and J.M. Alexander: Optimization and the geometry of numbers: packing and covering. SIAM Review 17 (1975), 475–519.Google Scholar
  35. [66S]
    Schmidt, W.M.: Mai3theorie in der Geometrie der Zahlen, Tendances Géom. en Algèbre et Théorie des Nombres 225–229. Paris: Centre National de la Recherche Sci. 1966.Google Scholar
  36. [77S]
    Sloane, N.J.A.: Binary codes, lattices and sphere packings. Combinat. surveys (Proc. Conf. Egham 1977 ), 117–164, London: Academic Press 1977.Google Scholar
  37. [61S]
    Zassenhaus, H.J.: Modern developments in the geometry of numbers. Bull. Amer. Math. Soc. 67 (1961), 427–439.Google Scholar
  38. [74S]
    Zassenhaus, H.J.: Gauss’ theory of ternary quadratic forms, an example of the theory of homogeneous forms in many variables, with applications. Selected topics on ternary forms and norms. (Sem. Number Theory, Pasadena 1974, 75) 3, 84 pp. Pasadena: Calif. Inst. Techn. 1976.Google Scholar

Articles

  1. [77]
    Abljalimov, S.B.: A short proof of a theorem on lattice points. Izv. Vys§. Ucebn. Zaved. Mat. 186 (1977), 3–6.Google Scholar
  2. [69]
    Aggarwal, S.K.: Inhomogeneous minima of binary quadratic, ternary cubic and quaternary quartic forms in fields of formal power series. Proc. Nat. Inst. Sci. India, Part A 35 (1969), 684–702.Google Scholar
  3. [77] Ahmedov, N.S.: On representation of square matrices by the product of diagonal, orthogonal, triangular and integral unimodular matrices (in connection with the inhomogeneous Minkowski conjecture)
    Zap. Nauén. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 67 (1977), 86–94.Google Scholar
  4. [72]
    Aitchison, P.W.: Two finiteness theorems in the Minkowski theory of reduction. J. Austral. Math. Soc. 14 (1972), 336–351.Google Scholar
  5. [71]
    Armitage, J.V.: The product of N linear forms in a field of series and the Riemann hypothesis for curves. Colloque de Théorie des Nombres (Univ. de Bordeaux 1969 ), 17–27, Paris: Soc. Math. France 1971.Google Scholar
  6. [77]
    Ash, A.V.: On eutactic forms. Canad. J. Math. 29 (1977), 1040–1054.Google Scholar
  7. [77]
    Babenko, V.F.: On the optimal error bound for cubature formulae on certain classes of continuous functions. Analysis Math. 3 (1977), 3–9.Google Scholar
  8. [78]
    Bakjev, K., A.S. Pen and B.F. Skubenko: Eine Abschätzung des Produktes inhomogener Linearformen nach oben. Mat. Zametki 26 (1978), 789–797.Google Scholar
  9. [54]
    Bambah, R.P.: On lattice coverings by spheres. Proc. Nat. Inst. Sci. India 20 (1954), 25–52.Google Scholar
  10. [77]
    Bambah, R.P., V. Ch. Dumir and R.J. Hans-Gill: Covering by star domains. Indian J. Pure Appl. Math. 8 (1977), 344–350.Google Scholar
  11. [52]
    Bambah, R.P., and C.A. Rogers: Covering the plane with convex sets. J. London Math. Soc. 27 (1952), 304–314.Google Scholar
  12. [64]
    Bambah, R.P., C.A. Rogers and H. Zassenhaus: On coverings with convex domains Acta Arith. 9 (1964), 191–207.Google Scholar
  13. [68]
    Bambah, R.P., and A.C. Woods: Convex bodies with a covering property. J. London Math. Soc. 43 (1968), 53–56.Google Scholar
  14. [68a]
    Bambah, R.P., and A.C. Woods: The covering constant for a cylinder. Monatsh. Math. 72 (1968), 107–117.Google Scholar
  15. [71]
    Bambah, R.P., and A.C. Woods: The thinnest double lattice covering of three-spheres. Acta Arith. 18 (1971), 321–336.Google Scholar
  16. [74]
    Bambah, R.P., and A.C. Woods: On a theorem of Dyson. J. Number Theory 6 (1974), 422–433.Google Scholar
  17. [77]
    Bambah, R.P., and A.C. Woods: On the product of three inhomogeneous linear forms. In: H. Zassenhaus, ed.: Number Theory and Algebra 7–18, New York, San Francisco, London: Academic Press 1977.Google Scholar
  18. [65]
    Bambah, R.P., A.C. Woods and H. Zassenhaus: Three proofs of Minkowski’s second inequality in the geometry of numbers. J. Austral. Math. Soc. 5 (1965), 453–462.Google Scholar
  19. [65]
    Bantegnie, R.: Sur l’indice de certain réseaux de R’ permis pour un octaèdre. Canad. J. Math. 17 (1965), 725 730.Google Scholar
  20. [67]
    Bantegnie, R.: Le “probleme des octaèdres” en dimension 5. Acta Arith. 14 (1967/68), 185–202.Google Scholar
  21. [69]
    Bantegnie, R.: Reseaux multipermis et multicritiques. Math. Zeitschr. 108 (1969), 173–190.Google Scholar
  22. [70]
    Bantegnie, R.: Sur une propriété de transfert concernant les boules de F“. Monatsh. Math. 74 (1970), 15.Google Scholar
  23. [74]
    Bantegnie, R.: La “conjecture des cylindres”. J. Number Theory 6 (1974), 73–98.Google Scholar
  24. [63]
    Baranovskii, E.P.: On minima of the density of a lattice covering of space by equal balls. Ivanov Gos. Ped. Inst. Uéen. Zap. 34 (1963), 71–76.Google Scholar
  25. [64]
    Baranovskii, E.P.: On packing of n-dimensional Euclidean spaces by equal spheres I. Izv. Vyss. Ucebn. Zaved. Matematika 1964 No. 2 (39), 14–24.Google Scholar
  26. [65]
    Baranovskii, E.P.: Local density minima of a lattice covering of a four-dimensional Euclidean space by equal spheres. Dokl. Akad. Nauk SSSR 164 (1965), 13–15Google Scholar
  27. [65]
    Baranovskii, E.P.: Local density minima of a lattice covering of a four-dimensional Euclidean space by equal spheres. Soviet Math. Dokl. 6 (1965), 1131–1133.Google Scholar
  28. [66]
    Baranovskii, E.P.: Local minima of the density of a lattice covering of four-dimensional Euclidean space by equal balls. Sibirsk. Mat. Z. 7 (1966), 974–1001.Google Scholar
  29. [69]
    Baranovskii, E.P.: Extremal lattice coverings. Ivanov. Gos. Ped. Inst. Uéen. Zap. 44 (1969), 47–57.Google Scholar
  30. [73]
    Baranovskii, E.P.: A certain theorem on L-partitions of lattice points. Mat. Zametki 13, (1973), 605–616Google Scholar
  31. [73]
    Baranovskii, E.P.: A certain theorem on L-partitions of lattice points. Math. Notes 13 (1973), 364–370.Google Scholar
  32. [73a]
    Baranovskii, E.P.: Volumes of L-simplexes of five-dimensional lattices. Mat. Zametki 13 (1973), 771–782Google Scholar
  33. [73a]
    Baranovskii, E.P.: Volumes of L-simplexes of five-dimensional lattices. Math. Notes 13 (1973), 460–466.Google Scholar
  34. [74]
    Baranovskii, E.P., Z.D. Lomakina and S.S. RySkov: The size of the angle at the vertex of a regular n-dimensional (n =5,6,7,8) simplex and certain estimates it: the geometry of numbers. Studies in the geometry of positive quadratic forms. Ivanov. Gos. Univ. Ucen. Zap. 89 (1974), 65–70.Google Scholar
  35. [66]
    Baranovskii, E.P., and S.S. Ryskov: The second local density minimum of a lattice covering of the four-dimensional Euclidean space by equal balls. Sibirsk. Mat. Z. 7 (1966), 731–739.Google Scholar
  36. [73]
    Baranovskii, E.P., and S.S. Ryskov: Primitive five-dimensional parallelohedra. Dokl. Akad. Nauk SSSR 212 (1973), 532–535Google Scholar
  37. [73]
    Baranovskii, E.P., and S.S. Ryskov: Primitive five-dimensional parallelohedra. Soviet Math. Dokl. 14 (1973), 1391–1395.Google Scholar
  38. [75]
    Baranovskii, E.P., and S.S. Ryskov: The combinatorial-metric structure of L-partitions of general five-dimensional lattices. Dokl. Akad. Nauk SSSR 220 (1975), 265–268Google Scholar
  39. [75]
    Baranovskii, E.P., and S.S. Ryskov: The combinatorial-metric structure of L-partitions of general five-dimensional lattices. Soviet Math. Dokl. 16 (1975), 47–51.Google Scholar
  40. [56]
    Barnes, E.S.: The covering of space by spheres. Canad. J. Math. 8 (1956), 293–304.Google Scholar
  41. [76]
    Barnes, E.S., and M.J. Cohn: On Minkowski reduction of positive quadratic forms. Mathematika 23 (1976), 156–158.Google Scholar
  42. [76a]
    Barnes, E.S., and M.J. Cohn: On the reduction of positive quaternary quadratic forms. J. Austral. Math. Soc. 22 ( Ser. A) (1976), 54–64.Google Scholar
  43. [67]
    Barnes, E.S., and T.J. Dickson: Extreme coverings of n-space by spheres. J. Austral. Math. Soc. 7 (1967), 115–127.Google Scholar
  44. [77]
    Barnes, E.S., and M. Mather: The number of non-homogeneous lattice points in subsets of E“. Math. Proc. Cambridge Philos. Soc. 82 (1977), 265–268.Google Scholar
  45. [72]
    Barnes, E.S., and D.W. Trenerry: A class of extreme lattice-coverings of n-space by spheres. J. Austral. Math. Soc. 14 (1972), 247–256.Google Scholar
  46. [62]
    Bender, E.A.: Area-perimeter relation for two-dimensional lattices. Amer. Math. Monthly 69 (1962), 742–744.Google Scholar
  47. [56]
    Birch, B.J., and H.P.F. Swinnerton-Dyer: On the inhomogeneous minimum of the product of n linear forms. Mathematika 3 (1956), 25–39.Google Scholar
  48. [68]
    Blanksby, P.E.: On the product of two linear forms, one homogeneous and one in-homogeneous. J. Austral. Math. Soc. 8 (1968), 457–511.Google Scholar
  49. [62]
    Bleicher, M.N.: Lattice coverings of n-space by spheres. Canad. J. Math. 14 (1962), 632–650.Google Scholar
  50. [14]
    Blichfeldt, H.F.: A new principle in the geometry of numbers, with some applications. Trans. Amer. Math. Soc. 15 (1914), 227–235.Google Scholar
  51. [34]
    Blichfeldt, H.F.: The minimum values of positive quadratic forms in six, seven and eight variables. Math. Z. 39 (1934), 1–15.Google Scholar
  52. [64]
    Blundon, W.J.: Some lower bounds for the density of multiple packing. Canad. Math. Bull. 7 (1964), 565–572.Google Scholar
  53. [74]
    Blundon, W.J.: A three-fold non-lattice covering. Canad. Math. Bull. 20 (1977), 29–31.Google Scholar
  54. [72]
    Bokowski, J., H. Hadwiger and J.M. Wills: Eine Ungleichung zwischen Volumen, Oberfläche und Gitterpunktanzahl konvexer Körper im n-dimensionalen euklidischen Raum. Math. Z. 127 (1972), 363–364.Google Scholar
  55. [62]
    Bombieri, E.: Sulla dimostrazione di C.L. Siegel del teorema fondamentale di Minkowski nella Geometria dei numeri. Boll. U. Ital. 17 (1962), 283–288.Google Scholar
  56. [63]
    Bombieri, E.: Sul teorema di “Tschebotarev”. Acta Arith. 8 (1963), 273–281.Google Scholar
  57. [63a]
    Bombieri, E.: Alcune osservazioni sul prodotto di n forme lineari reali non omogenee. Ann. Mat. pura appl. (4) 71 (1963), 279–286.Google Scholar
  58. [31]
    Bruneder, E.: Die Reduktion dreidimensionaler Punktgitter mittels verallgemeinerter Abstandsbestimmungen. Diss. Wien 1931.Google Scholar
  59. [44]
    Brunngraber, E.: Über Punktgitter. Diss. Wien 1944.Google Scholar
  60. [72]
    Butler, G.J.: Simultaneous packing and covering in Euclidean space. Proc. London Math. Soc. (3) 25 (1972), 721–735.Google Scholar
  61. [59]
    Cassels, J.W.S.: On a problem of Rankin about the Epstein zeta-function. Proc. Glasgow Math. Assoc. 4 (1959), 73–81.Google Scholar
  62. [47]
    Chalk, J.H.H.: On the positive values of linear forms. Quart. J. Math. Oxford 18 (1947), 215–227.Google Scholar
  63. [64]
    Chalk, J.H.H.: A local criterion for the covering of space by convex bodies. Acta Arith. 9 (1964), 237–243.Google Scholar
  64. [67]
    Chalk, J.H.H.: A note on coverings of E“ by convex sets. Canad. Math. Bull. 10 (1967), 669–673.Google Scholar
  65. [68]
    Chalk, J.H.H., and C.A. Rogers: A study of convex cones from the point of view of the geometry of numbers. J. reine angew. Math. 230 (1968), 139–166.Google Scholar
  66. [65]
    Chander, V., and R.J. Hans: An inhomogeneous minimum of a class of functions. Monatsh. Math. 69 (1965), 193–207.Google Scholar
  67. [72]
    Chandra, K., and Prakash: Note on n-ary extreme forms. Ranchi Univ. Math. J. 3 (1972), 55–62.Google Scholar
  68. [65]
    Cleaver, F.L.: On a theorem of Voronoi. Trans Amer. Math. Soc. 120 (1965), 390–400.Google Scholar
  69. [65a]
    Cleaver, F.L.: On coverings of four-space by spheres. Trans. Amer. Math. Soc. 120 (1965), 401–416.Google Scholar
  70. [76]
    Cohn, M.J.: Multiple lattice covering of space. Proc. London Math. Soc. (3) 32 (1976), 117–132.Google Scholar
  71. [52]
    Cole, A.: On the product of n linear forms. Quart. J. Math. Oxford Ser. 3 (1952), 56–62.Google Scholar
  72. [69]
    Conway, J.H.: A characterization of Leech’s lattice. Invent. Math. 7 (1969), 137–142.Google Scholar
  73. [74]
    Cook, R.J.: Compounds of asymmetric convex bodies. Israel J. Math. 19 (1974), 349–359.Google Scholar
  74. [75]
    Cook, R.J.: Indefinite Hermitian forms. J. London Math. Soc. (2) 11 (1975), 107–112.Google Scholar
  75. [35]
    Corput, J.G. van der: Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen I, II. Acta Arith. 1 (1935), 62–66Google Scholar
  76. [35]
    Corput, J.G. van der: Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen I, II. Acta Arith. 2 (1936) 145–146.Google Scholar
  77. [46]
    Corput, G.J. van der, and H. Davenport: On Minkowski’s fundamental theorem in the geometry of numbers. Proc. Kon. Ned. Akad. Wet. 49 (1946), 701–707.Google Scholar
  78. [65]
    Courant, R.: The least dense lattice packing of two-dimensional convex bodies. Comm. Pure Appl. Math. 18 (1965), 339–343.Google Scholar
  79. [51]
    Coxeter, H.S.M.: Extreme forms. Canad. J. Math. 3 (1951) 391–441.Google Scholar
  80. [62]
    Coxeter, H.S.M.: The classification of zonohedra by means of projective diagrams. J. Math. Pures Appl. (9) 41 (1962), 137–156.Google Scholar
  81. [63]
    Coxeter, H.S.M.: An upper bound for the number of nonoverlapping spheres that can touch another of the same size. Proc. Sympos. Pure Math. VII, 53–71 Providence, R.I.: Amer. Math. Soc. 1963.Google Scholar
  82. [59]
    Coxeter, H.S.M., L. Few and C.A. Rogers: Covering space by equal spheres. Mathematika 6 (1959), 147–157.Google Scholar
  83. [75]
    Crisalli, A.J.: The fundamental cone and the Minkowski cone. J. reine angew. Math. 277 (1975), 74–81.Google Scholar
  84. [69]
    Danicic, I.: An elementary proof of Minkowski’s second inequality. J. Austral. Math. Soc. 10 (1969), 177–181.Google Scholar
  85. [68]
    Dauenhauer, M.H.: The densest irregular packing of the Mordell cubic norm-distance. Illinois J. Math. 12 (1968), 660–681.Google Scholar
  86. [39]
    Davenport, H.: A simple proof of Remak’s Theorem on the product of 3 linear forms. J. London Math. Soc. 14 (1939), 47–51.Google Scholar
  87. [46]
    Davenport, H.: On a theorem of Tschebotareff. J. London Math. Soc. 21 (1946), 28–34Google Scholar
  88. [46]
    Davenport, H.: On a theorem of Tschebotareff. corr. 24 (1949), 316.Google Scholar
  89. [71]
    Davenport, H.: A determinant of linear forms. Mathematika 18 (1971), 100–104.Google Scholar
  90. [47]
    Davenport, H., and C.A. Rogers: Hlawka’s theorem in the geometry of numbers. Duke Math. J. 14 (1947), 367–375.Google Scholar
  91. [50]
    Davenport, H., and C.A. Rogers: On the critical determinant of cylinders. Quart. J. Math. Oxford (2) 1 (1950), 215–218.Google Scholar
  92. [29]
    Delone, B.: Sur la partition régulière de l’espace à 4 dimensions I,II. Izv. Akad. Nauk SSSR Otd. Fiz-Mat. Nauk 7 (1929), 79–110, 147–164.Google Scholar
  93. [33]
    Delone, B.: Sur là generalization de la théorie des paralleloédres. Izv. Akad. Nauk SSSR Otd. Fiz.-Mat. Nauk 7 (1933), 641–646.Google Scholar
  94. [34]
    Delone, B.: Sur la sphère vide. Izv. Akad. Nauk SSSR Otd. Fiz.-Mat. Nauk 7 (1934), 793–800.Google Scholar
  95. [37]
    Delone, B.: Geometry of positive quadratic forms. Uspeki Mat. Nauk 3 (1937), 16–62Google Scholar
  96. [37]
    Delone, B.: Geometry of positive quadratic forms. Uspeki Mat. Nauk 4 (1938), 102–164.Google Scholar
  97. [70]
    Delone, B.N., N.P. Dolbilin, S.S. Ryskov and M.I. Stogrin: A new construction of the theory of lattice coverings of an n-dimensional space by congruent balls. Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 289–298.Google Scholar
  98. [76]
    Delone, B.N., N.P. Dolbilin, M.I. Stogrin and R.V. Galiulin: A local test for the regularity of a system of points. Dokl. Akad. Nauk SSSR 227 (1976), 19–21Google Scholar
  99. [76]
    Delone, B.N., N.P. Dolbilin, M.I. Stogrin and R.V. Galiulin: A local test for the regularity of a system of points. Soviet Math. Dokl. 17 (1976), 319–322.Google Scholar
  100. [73]
    Delone, B.N., R.V. Galiulin, N.P. Dolbilin, V.A. Zalgaller and M.I. Stogrin: Three successive minima of a three-dimensional lattice. Dokl. Akad. Nauk SSSR 209 (1973), 25–28Google Scholar
  101. [73]
    Delone, B.N., R.V. Galiulin, N.P. Dolbilin, V.A. Zalgaller and M.I. Stogrin: Three successive minima of a three-dimensional lattice. Soviet Math. Dokl. 14 (1973), 309–313.Google Scholar
  102. [63]
    Delone, B.N., and S.S. Ryskov: Solution of the problem on the least dense lattice covering of a 4dimensional space by equal spheres. Dokl. Akad. Nauk SSSR 152 (1963), 523–524Google Scholar
  103. [63]
    Delone, B.N., and S.S. Ryskov: Solution of the problem on the least dense lattice covering of a 4dimensional space by equal spheres. Soviet Math. Dokl. 4 (1963), 1333–1334.Google Scholar
  104. [67]
    Delone, B.N., and S.S. Ryskov: On the theory of extrema of multi-dimensional;-functions. Dokl. Akad. Nauk 173 (1967), 991–994Google Scholar
  105. [67]
    Delone, B.N., and S.S. Ryskov: On the theory of extrema of multi-dimensional;-functions. Soviet Math. Dokl. 8 (1967), 499–503.Google Scholar
  106. [71]
    Delone, B.N., and S.S. Ryskov: Extremal problems of the theory of positive quadratic forms. Trudy Mat. Inst. Steklov 112 (1971), 203–223.Google Scholar
  107. [67]
    Delone, B.N., S.S. Ryskov and M.I. Stogrin: On a theorem of Sandakova in the theory of positive quadratic forms. Mat. Zametki 1 (1967), 253–262.Google Scholar
  108. [61]
    Delone, B.N., and N.N. Sandakova: Theory of sterohedra. Trudy Mat. Inst. Steklov 64 (1961), 28–51.Google Scholar
  109. [65]
    Delone, B.N., N.N. Sandakova and S.S. Ryskov: An optimal cubature grid for bilaterally smooth functions of two variables. Dokl. Akad. Nauk SSSR 162 (1965), 1230–1233Google Scholar
  110. [65]
    Delone, B.N., N.N. Sandakova and S.S. Ryskov: An optimal cubature grid for bilaterally smooth functions of two variables. Soviet Math. Dokl. 6 (1965), 836–839.Google Scholar
  111. [64]
    Diananda, P.H.: Notes on two lemmas concerning the Epstein zeta-function. Proc. Glasgow Math. Assoc. 6 (1964), 202–204.Google Scholar
  112. [66]
    Dickson, T.J.: Lattice covering of n-space by spheres. Thesis, Adelaide 1966.Google Scholar
  113. [66a]
    Dickson, T.J.: An extreme covering of 4-space by spheres. J. Austral. Math. Soc. 6 (1966), 179–192.Google Scholar
  114. [67]
    Dickson, T.J.: The extreme coverings of 4-space by spheres. J. Austral. Math. Soc. 7 (1967), 490–496.Google Scholar
  115. [68]
    Dickson, T.J.: A sufficient condition for an extreme covering of n-space by spheres. J. Austral. Math. Soc. 8 (1968), 56–62.Google Scholar
  116. [72]
    Dickson, T.J.: On Voronoi reduction of positive definite quadratic forms. J. Number Theory 4 (1972), 330–341.Google Scholar
  117. [75]
    Dieter, U.: How to calculate shortest vectors in a lattice. Math. Comp. 29 (1975), 827–833.Google Scholar
  118. [1850]
    Dirichlet, G.L.: Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Reine angew. Math. 40 (1850), 209–227.Google Scholar
  119. [74]
    Dolbilin, N.P.: The covering radius of hyperbolically equivalent n-dimensional lattices, and the boundedness of the index of a divided parallelepiped. Dokl. Akad. Nauk SSSR 214 (1974), 1002–1004Google Scholar
  120. [74]
    Dolbilin, N.P.: The covering radius of hyperbolically equivalent n-dimensional lattices, and the boundedness of the index of a divided parallelepiped. Soviet Math. Dokl. 15 (1974), 277–279.Google Scholar
  121. [76]
    Dolbilin, N.P.: Local properties of discrete regular systems. Dokl. Akad. Nauk. SSSR 230 (1976), 516–519Google Scholar
  122. [76]
    Dolbilin, N.P.: Local properties of discrete regular systems. Soviet Math. Dokl. 17 (1976), 1333–1337.Google Scholar
  123. [76]
    Dubois, E.: Théorèmes de transfert en géometrie des nombres sur un anneau d’adeles de Q. C.R. Acad. Sci. Paris Ser. A-B 283 (1976), A803 - A806.Google Scholar
  124. [67]
    Dumir, V.Ch.: Inhomogeneous minimum of indefinite quaternary quadratic forms. Proc. Cambridge Philos. Soc. 63 (1967), 277–290.Google Scholar
  125. [67a]
    Dumir, V.Ch.: Asymmetric inequalities for non-homogeneous ternary quadratic forms. Proc. Cambridge Philos. Soc. 63 (1967), 291–303.Google Scholar
  126. [68]
    Dumir, V.Ch.: Positive values of inhomogeneous quarternary quadratic forms 1,11. J. Austral. Math. Soc. 8 (1968), 87–101, 287–303.Google Scholar
  127. [69]
    Dumir, V.Ch.: Asymmetric inequalities for non-homogeneous ternary quadratic forms. J. Number Theory 1 (1969), 326–345.Google Scholar
  128. [70]
    Dumir, V.Ch.: On positive values of indefinite binary quadratic forms. Math. Student 38 (1970), 177–182.Google Scholar
  129. [72]
    Dumir, V.Ch., and R.J. Hans-Gill: Lattice double coverings in the plane. Indian J. Pure Appl. Math. 3 (1972), 466–480.Google Scholar
  130. [72a]
    Dumir, V.Ch., and R.J. Hans-Gill: Lattice double packings in the plane. Indian J. Pure Appl. Math. 3 (1972), 481–487.Google Scholar
  131. [72b]
    Dumir, V.Ch., and R.J. Hans-Gill: A counter example in geometry of numbers. Indian J. Pure Appl. Math. 3 (1972), 460–465.Google Scholar
  132. [77]
    Dumir, V.Ch., and R.J. Hans-Gill: On a conjecture of Mahler. Bull Austral. Math. Soc. 16 (1977), 125–129.Google Scholar
  133. [48]
    Dyson, F.J.: On the product of four non-homogeneous linear forms. Ann. of Math. (2) 49 (1948), 82–109.Google Scholar
  134. [64]
    Ehrhart, E.: Une généralisation probable du théorème fondamental de Minkowski. C.R. Acad. Sci. Paris 258 (1964), 4885–4887.Google Scholar
  135. [61]
    Ennola, V.: On the lattice constant of a symmetric convex domain. J. London Math. Soc. 36 (1961), 135–138.Google Scholar
  136. [64]
    Ennola, V.: A lemma about the Epstein zeta-function. Proc. Glasgow Math. Assoc. 6 (1964), 198–201.Google Scholar
  137. [64a]
    Ennola, V.: On a problem about the Epstein zeta-function. Proc. Cambridge Philos. Soc. 60 (1964), 855–875.Google Scholar
  138. [64a]
    Erdös, P., L. Few and C.A. Rogers: The amount of overlapping in partial coverings of space by equal spheres. Mathematika 11 (1964), 171–184.Google Scholar
  139. [64]
    Erdös, P., and C.A. Rogers: The star number of coverings of space with convex bodies. Acta Arith. 9 (1964), 41–45.Google Scholar
  140. [50]
    Fary, I.: Sur la densité des réseaux de domaines convexes. Bull. Soc. Math. France 78 (1950), 152–161.Google Scholar
  141. [76]
    Fejes Töth, G.: Multiple packing and covering of the plane with circles. Acta Math. Acad. Sci. Hungar. 27 (1976), 135–140.Google Scholar
  142. [75]
    Fejes Töth, G., and A. Florian: Mehrfache gitterförmige Kreisund Kugelanordnungen. Monatsh. Math. 79 (1975), 13–20.Google Scholar
  143. [46]
    Fejes Tóth, L.: Eine Bemerkung über die Bedeckung der Ebene durch Eibereiche mit Mittelpunkt. Acta Sci. Math. Szeged 11 (1946), 93–95.Google Scholar
  144. [48]
    Fejes Tóth, L.: On the densest packing of domains. Proc. Kon. Ned. Akad. Wet. 51 (1948), 189–192.Google Scholar
  145. [50]
    Fejes Tóth, L.: Some packing and covering theorems. Acta Sci. Math. Szeged 12/A (1950), 62–67.Google Scholar
  146. [64]
    Fejes Tóth, L.: What the bees know and what they do not know. Bull. Amer. Math. Soc. 70 (1964), 468–481.Google Scholar
  147. [65]
    Fejes Tóth, L.: Minkowskian distribution of disks. Proc. Amer. Math. Soc. 16 (1965), 999–1004.Google Scholar
  148. [73]
    Fejes Tóth, L.: On the density of a connected lattice of convex bodies. Acta Math. Acad. Sci. Hungar. 24 (1973), 373–376.Google Scholar
  149. [56]
    Few, L.: Covering by spheres. Mathematika 3 (1956), 136–139.Google Scholar
  150. [67]
    Few, L.: Double covering with spheres. Mathematika 14 (1967), 207–214.Google Scholar
  151. [71]
    Few, L.: The multiplicity of partial coverings of space. Acta Arith. 18 (1971), 213–219.Google Scholar
  152. [69]
    Few, L., and P. Kanagasabapathy: The double packing of spheres. J. London Math. Soc. 44 (1969), 141–146.Google Scholar
  153. [77]
    Fields, K.L.: On the groups of integral automorphisms of a positive definite quadratic form. J. London Math. Soc. (2) 15 (1977), 26–28.Google Scholar
  154. [64]
    Foster, D.M.E.: On generating points of a lattice in the region |x1 2 + x2 2−x3 2| ≥ 1. Proc. Glasgow Math. Assoc. 6 (1964), 141 - 155.Google Scholar
  155. [75]
    Fujiwara, M.: On the best possible exponent in norm form inequalities. J. Math. Soc. Japan 27 (1975), 350–358.Google Scholar
  156. [62]
    Gameckii, A.F.: On the theory of covering Euclidean n-space by equal spheres. Dokl. Akad. Nauk SSSR 146 (1962), 991–994Google Scholar
  157. [62]
    Gameckii, A.F.: On the theory of covering Euclidean n-space by equal spheres. Soviet Math. Dokl. 3 (1962), 1410–1414.Google Scholar
  158. [63]
    Gameckii, A.F.: The optimality of Voronoi’s lattice of the first type among lattices of the first type of any number of dimensions. Dokl. Akad. Nauk SSSR 151 (1963), 482–484.Google Scholar
  159. [69]
    Gameckii, A.F., and S.M. Duhovnyi: A certain extremal problem. Mat. Issled 4 (1969), 131–137.Google Scholar
  160. [1831]
    Gauß, C.F.: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber. Göttingische gelehrte Anzeigen, 1831.Google Scholar
  161. [1831]
    Gauß, C.F.: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber. J. reine angew. Math. 20 (1840), 312–320Google Scholar
  162. [1831]
    Gauß, C.F.: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber. Werke II, 188–196.Google Scholar
  163. [77]
    Gbur, M.E.: The Markoff spectrum and minima of indefinite binary quadratic forms. Proc. Amer. Math. Soc. 63 (1977), 17–22.Google Scholar
  164. [77a]
    Gbur, M.E.: Accumulation points of the Lagrange and Markoff spectra. Monatsh. Math. 84 (1977), 91–108.Google Scholar
  165. [65]
    Godwin, H.J.: On the inhomogeneous minima of totally real cubic norm-forms. J. London Math. Soc. 40 (1965), 623–627.Google Scholar
  166. [75]
    Golser, G.: Über Gitterkonstanten spezieller Sternkörper. Osterreich. Akad. Wiss. Math.naturwiss. KI. S.-B. II 184 (1975), 227–238.Google Scholar
  167. [74]
    Golubev, S.Ja.: A certain property of lattices that relates polyhedra of the L and V-subdivision of the lattices. Studies in the geometry of positive quadratic forms. Ivanov. Gos. Univ. Ucen. Zap. 89 (1974), 71–75.Google Scholar
  168. [77]
    Grišanovskaja, K.I., A.V. Malyšev, U.M. Pačev and A.C. Fridarova: The proof of Minkowski’s conjecture, concerning the critical determinant of the region |x||p+|y|p ≥ 1 for 5 ≥ p ≥ 6. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov Akad. Nauk SSSR 67 (1977), 95–107, 225.Google Scholar
  169. [59]
    Groemer, H.: Eine Bemerkung über Gitterpunkte in ebenen konvexen Bereichen. Arch. Math. 10 (1959), 62–63.Google Scholar
  170. [62]
    Groemer, H.: Über die dichteste gitterförmige Lagerung kongruenter Tetraeder. Monatsh. Math. 66 (1962), 12–15.Google Scholar
  171. Groemer, H.: Über gewisse dichteste Anordnungen von Punkten in der Ebene. Arch. Math. 15 (1964) 385–387.Google Scholar
  172. [66]
    Groemer, H.: Zusammenhängende Lagerungen konvexer Körper. Math. Z. 94 (1966), 66–78.Google Scholar
  173. [70]
    Groemer, H.: Über Treffanzahlen in Figurengittern. Monatsh. Math. 74 (1970), 21–29.Google Scholar
  174. [71]
    Groemer, H.: Continuity properties of Voronoi domains. Monatsh. Math. 75 (1971), 423–431.Google Scholar
  175. [79]
    Groemer, H.: On multiple space subdivisions by zonotopes. Monatsh. Math., to appear.Google Scholar
  176. [78]
    Grover, V.: Thesis, Chandigarh: 1978.Google Scholar
  177. [70]
    Gruber, B.: On the minimum of a positive definite quadratic form of three variables. Glasnik Mat. Ser. III 5 (25) (1970), 1–18.Google Scholar
  178. [67]
    Gruber, P.M.: Über das Produkt inhomogener Linearformen. Acta Arith, 13 (1967), 9–27.Google Scholar
  179. [67a]
    Gruber, P.M.: Eine Erweiterung des Blichfeldtschen Satzes mit einer Anwendung auf inhomogene Linearformen, Monatsh. Math. 71 (1967), 143–147.Google Scholar
  180. [67b]
    Gruber, P.M.: Zur Gitterüberdeckung des ℝn durch Sternkörper. Österr. Akad. Wiss. Math.naturw. Kl. S-B. II 176 (1967), 1–7.Google Scholar
  181. [70]
    Gruber, P.M.: Über einige Resultate in der Geometrie der Zahlen. Number Theory (Coll. Janos Bolyai Math. Soc., Debrecen 1968 ), 105–110. Amsterdam: North-Holland 1970.Google Scholar
  182. [70a]
    Gruber, P.M.: Über einen Satz von Remak in der Geometrie der Zahlen. J. reine angew. Math. 245 (1970), 107–118.Google Scholar
  183. [71]
    Gruber, P.M.: Bemerkungen zum Umkehrproblem für den Minkowskischen Linearformensatz. Ann. Univ. Sci. Budapest Eötvös Sect. Math. 13 (1970), 5–10 (1971).Google Scholar
  184. [74]
    Gruber, P.M.: Über kennzeichnende Eigenschaften von euklidischen Räumen und Ellipsoiden I. J. reine angew. Math. 265 (1974), 61–83.Google Scholar
  185. [76]
    Gruber, P.M.: Eine Bemerkung über DOTU-Matrizen. J. Number Theory 8 (1976), 350–351.Google Scholar
  186. [79]
    Gruber. P.M., and G. Ramharter: Beiträge zum Umkehrproblem für den Minkowskischen Linearformensatz. In preparation.Google Scholar
  187. [73]
    Guïva, L.A., and Ju. G. Stojan: A certain method of lattice packing of a plane and a rectangular region with congruent figures. Kibernetika (Kiev) 1973, No. 1, 130–138.Google Scholar
  188. [70]
    Hadwiger, H.: Volumen und Oberfläche eines Eikörpers, der keine Gitterpunkte überdeckt. Math. Z. 116 (1970), 191–196.Google Scholar
  189. [42]
    Hajós, G.: Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter. Math. Zeitschr. 47 (1942), 427–467.Google Scholar
  190. [71]
    Hall, Marshall, Jr.: The Markoff spectrum. Acta Arith. 18 (1971), 387–399.Google Scholar
  191. [76]
    Hammer, J., and D. Dwyer: On sequences of lattice packings. Bull. Austral. Math. Soc. 15 (1976), 133–139.Google Scholar
  192. [67]
    Hans, R.J.: Extremal packing and covering sets. Monatsh. Math. 71 (1967), 203–213.Google Scholar
  193. [69]
    Hans, R.J.: On the Reinhardt-Mahler theorem. Proc. Amer. Math. Soc. 20 (1969), 391–396.Google Scholar
  194. [70]
    Hans, R.J.: Covering constants of some non-convex domains. Indian J. Pure Appl. Math. 1 (1970), 127–141.Google Scholar
  195. [71]
    Hans, R.J.: Maximal covering sets I,II. J. Indian Math. Soc. (N.S.) 35 (1971), 171–179 (1972), 35 (1971), 181–203 (1972).Google Scholar
  196. [70a]
    Hans-Gill, R.J.: Covering constant of a star domain. J. Number Theory 2 (1970), 298–309.Google Scholar
  197. [59]
    Heppes, A.: Mehrfache gitterförmige Kreislagerungen in der Ebene. Acta Math. Acad. Sci. Hungar. 10 (1959), 141–148.Google Scholar
  198. [1850]
    Hermite, Ch.: Première lettre à M. Jacobi. J. reine angew. Math. 40 (1850), 261–278Google Scholar
  199. [1850]
    Hermite, Ch.: Première lettre à M. Jacobi. Oeuvres I, 100–121.Google Scholar
  200. [70]
    Hightower, C.J.: The minima of indefinite binary quadratic forms. J. Number Theory 2 (1970), 364–378.Google Scholar
  201. [44]
    Hlawka, E.: Zur Geometrie der Zahlen. Math. Z. 49 (1944), 285–312.Google Scholar
  202. [50]
    Hlawka, E.: Über Gitterpunkte in Parallelepipeden. J. reine angew. Math. 87 (1950), 246–252.Google Scholar
  203. [54]
    Hlawka, E.: Ausfüllung und Uberdeckung durch konvexe Körper. Monatsh. Math. 58 (1954), 287–291.Google Scholar
  204. [66]
    Hlawka, E.: Geometrie der Zahlen und trigonometrische Interpolation bei Funktionen von mehreren Variablen. Les Tendances Geom. en Algèbre et Théorie des Nombres, 83–86. Paris: Centre National de la Recherche Sci. 1966.Google Scholar
  205. [33]
    Hofreiter, N.: Über einen Approximationssatz von Minkowski. Monatsh. Math. Phys. 40 (1933), 351–392.Google Scholar
  206. [33a]
    Hofreiter, N.: Zur Geometrie der Zahlen. Monatsh. Math. Phys. 40 (1933), 181–192Google Scholar
  207. [33a]
    Hofreiter, N.: Zur Geometrie der Zahlen. Monatsh. Math. Phys. 42 (1935), 101–112.Google Scholar
  208. [71]
    Hortobagyi, I.: Durchleuchtung gitterförmiger Kugelpackungen mit Lichtbündeln. Studia Sci. Math. Hungar. 6 (1971), 147–150.Google Scholar
  209. [77]
    Horvath, J.: Close lattice packings of balls in lattices of the first type. Ann. Sci. Univ. Budapest. Sect. Math. 20 (1977), 191–194.Google Scholar
  210. [70]
    Hoylman, D.J.: The densest lattice packing of tetrahedra. Bull. Amer. Math. Soc. 76 (1970), 135–137.Google Scholar
  211. [64]
    Ignatev, N.K.: On a practical method of finding dense packings of n-spheres. Sibersk. Mat. 2.5 (1964), 815–819.Google Scholar
  212. [66]
    Ignatev, N.K.: On finding dense packings of n. dimensional spheres. Sibirsk. Mat. 2. 7 (1966), 820–825.Google Scholar
  213. [68]
    Jackson, T. H.: Small positive values of indefinite binary quadratic forms. J. London Math. Soc. 43 (1968), 730–738.Google Scholar
  214. [69]
    Jackson, T. H.: Small positive values of indefinite quadratic forms. J. London Math. Soc. (2) 1 (1969), 643–659.Google Scholar
  215. [72]
    Jackson, T. H.: Note on the minimum of an indefinite binary quadratic form. J. London Math. Soc. (2) 5 (1972), 209–214.Google Scholar
  216. [76]
    Jackson, T. H.: On the minima of zero binary quadratic forms: J. London Math. Soc. (2) 14 (1976), 178–182.Google Scholar
  217. [48]
    Jarnik, V.: On the main theorem of the Minkowski geometry of numbers. Casopis Pest. Mat. Fys. 73 (1948), 1–8.Google Scholar
  218. [78]
    Johnston, G.: Extreme Hermitian forms over complex quadratic fields. Thesis, Cambridge 1978. Jones, A.J.Google Scholar
  219. [70]
    Johnston, G.: Cyclic overlattices. Acta Arith. 17 (1970), 303–314.Google Scholar
  220. [71]
    Johnston, G.: Cyclic overlattices. II. Diophantine approximation and sums of roots of unity. Acta Arith. 18 (1971), 93–103.Google Scholar
  221. [75]
    Johnston, G.: Cyclic overlattices III, IV. J. Number Theory 7 (1975), 267–282, 283–292.Google Scholar
  222. [78]
    Kabatjanskii, G.A., and V.I. Levenstein: Bounds for packings on the sphere and in space. Problemy Peredaci Informacii 14 (1978), 3–25.Google Scholar
  223. [76]
    Karian, Z.A.: The covering problem for the fields Q(−1)1/2 and Q(−3)1/2. J. Number Theory 8 (1976), 233–244.Google Scholar
  224. [66]
    Kaur, G.: Extreme quadratic forms for coverings in four variables. Proc. Nat. Inst. Sci. India Part A 33 (1966), 414–417.Google Scholar
  225. [39]
    Kershner, R.: The number of circles covering a set. Amer. J. Math. 61 (1939), 665–671.Google Scholar
  226. [36]
    Ko, Ch.: Note on lattice points in a parallelepiped. J. London Math. Soc. 12 (1936), 40–47.Google Scholar
  227. [1872]
    Korkine, A., and G. Zolotareff: Sur les formes quadratiques positives quaternaires. Math. Annalen 5 (1872), 581–583.Google Scholar
  228. [1873]
    Korkine, A., and G. Zolotareff: Sur les formes quadratiques. Math. Annalen 6 (1873), 366–389.Google Scholar
  229. [1877]
    Korkine, A., and G. Zolotareff: Sur les formes quadratiques positives. Math. Annalen 11 (1877), 242–292.Google Scholar
  230. [66]
    Kuharev, V.G.: The critical determinant of the region |x|p+|y|p ≥ 1. Dokl. Akad. Nauk SSSR 169 (1966), 1273–1275Google Scholar
  231. [66]
    Kuharev, V.G.: The critical determinant of the region |x|p+|y|p = 1. Soviet Math. Dokl. 7 (1966), 1090–1093.Google Scholar
  232. [68]
    Kuharev, V.G.: Investigations of the critical determinant of |x|p+|y|p = 1 by means of Minkowski’s conjecture. Vestnik Leningrad. Univ. 23 (1968) 34–50Google Scholar
  233. [68]
    Kuharev, V.G.: Investigations of the critical determinant of |x|p+|y|p = 1 by means of Minkowski’s conjecture. Vestnik 1 (1974), 197–216.Google Scholar
  234. [71]
    Kuharev, V.G.: Critical determinant of the region |x|p+|y|p = 1. Izv. Vys. Ueebn. Zay. Mat. 1971 (105), 62–70.Google Scholar
  235. [1773]
    Lagrange, J.L.: Recherches d’arithmetique. Nouv. Mem. Acad. Roy. Sc. Belle Lettres Berlin 1773, 265–312Google Scholar
  236. [1773]
    Lagrange, J.L.: Recherches d’arithmetique. oeuvres III 693–758.Google Scholar
  237. [64]
    Leech, J.: Some sphere packing in higher space. Canad. J. Math. 16 (1964), 657–682.Google Scholar
  238. [67]
    Leech, J.: Five dimensional non-lattice sphere packings. Canad. Math. Bull. 10 (1967), 387–393.Google Scholar
  239. [67a]
    Leech, J.: Notes on sphere packings. Canad. J. Math. 19 (1967), 251–267.Google Scholar
  240. [69]
    Leech, J.: Six and seven dimensional non-lattice sphere packings. Canad. Math. Bull. 12 (1969), 151–155.Google Scholar
  241. [70]
    Leech, J., and N.J.A. Sloane: New sphere packings in more than thirty-two dimensions. Proc. Conf. Comb. Math. Appl (Chapel Hill 1970 ), 345–355. Chapel Hill: Univ. N.C. 1970.Google Scholar
  242. [70a]
    Leech, J., and N.J.A. Sloane: New sphere packings in dimensions 9–15. Bull. Amer. Math. Soc. 76 (1970), 1006–1010.Google Scholar
  243. ]: Sphere packings and error-correcting codes. Canad. J. Math. 23 (1971), 718–745.Google Scholar
  244. [61]
    Lekkerkerker, G.C.: Eine Mordell’sche Methode in der Geometrie der Zahlen. J. reine angew. Math. 206 (1961), 20–25.Google Scholar
  245. [78]
    Lekkerkerker, G.C.: Geometric representation of recurring sequences. J. Austral. Math. Soc. 20 (Ser. A) (1978), to appear.Google Scholar
  246. [75]
    Levenstein, V.I.: The maximal density of filling an n-dimensional Euclidean space with equal balls. Mat. Zametki 18 (1975), 301–311Google Scholar
  247. [75]
    Levenstein, V.I.: The maximal density of filling an n-dimensional Euclidean space with equal balls. Math. Notes 18 (1975), 765–771.Google Scholar
  248. [75]
    Lindgren, A.: One-sided minima of indefinite binary quadratic forms and one-sided Diophantine approximations. Ark. Mat. 13 (1975), 287–302.Google Scholar
  249. [77]
    Luthar, I.S., and M. Vinygard: A theorem of Mahler and some applications to transference theorems. Colloq. Math. 37 (1977), 317–327.Google Scholar
  250. [61]
    Macbeath, A.M.: Factorization of matrices and Minkowski’s conjecture. Proc. Glasgow Math. Assoc. 5 (1961), 86–89.Google Scholar
  251. [58]
    Macbeath, A.M., and C.A. Rogers: Siegel’s mean value theorem in the geometry of numbers. Proc. Cambridge Philos. Soc. 54 (1958), 139–151.Google Scholar
  252. [46]
    Mahler, K.: On lattice points in n-dimensional star bodies I. Existence theorems. Proc. Royal Soc. London A 187 (1946), 151–187.Google Scholar
  253. [47]
    Mahler, K.: On the minimum determinant and the circumscribed hexagons of a convex domain. Proc. Kon. Ned. Akad. Wet. 50 (1947), 692–703.Google Scholar
  254. [80]
    Mahler, K.: Convex bodies which tile space by translation. Preliminary version.Google Scholar
  255. [54]
    Mahler, K.: On a problem in the geometry of numbers. Rend. Mat. Appl. (5) 14 (1954), 38–41.Google Scholar
  256. [66]
    Mahler, K.: A remark on Kronecker’s theorem. Enseignement Math. (2) 12 (1966), 183–189.Google Scholar
  257. [74]
    Mahler, K.: Polar analogues of two theorems by Minkowski. Bull. Austral. Math. Soc. 11 (1974), 121–129.Google Scholar
  258. [76]
    Mahler, K.: An addition to a note of mine: “Polar analogues of two theorems by Minkowski”, Bull. Austral. Math. Soc. 11 (1974), 121–129.Google Scholar
  259. [76]
    Mahler, K.: An addition to a note of mine: “Polar analogues of two theorems by Minkowski”, Bull. Austral. Math. Soc. 14 (1976), 397–398.Google Scholar
  260. [73]
    Malyšev, A.V.: A remark on star sets. Zap. Nauen Sem. Leningrad. Otdel. Mat. Inst. Steklov. 33 (1973), 94–96Google Scholar
  261. [73]
    Malyšev, A.V.: A remark on star sets. J. Soviet Math. 6 (1976), 692–693.Google Scholar
  262. [73a]
    Malyšev, A.V.: Mordell’s method of reciprocal lattices in the geometry of numbers. Zap. Nauen. Sem. Leningrad. Otdel Mat. Inst. Steklov. 33 (1973), 97–115Google Scholar
  263. [73a]
    Malyšev, A.V.: Mordell’s method of reciprocal lattices in the geometry of numbers. J. Soviet Math. 6 (1976), 694–706.Google Scholar
  264. [77]
    Malyšev, A.V.: The application of an electronic computer to the proof of a certain conjecture of Minkowski from the geometry of numbers. Zap. Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 71 (1977), 163–180, 286.Google Scholar
  265. [75]
    Malysev, A.V., and A.B. Voronetskii: The proof of Minkowski’s conjecture concerning the critical determinant of the region |x|p+|y|p = 1 for p = 6. Acta Arith. 27 (1975), 447–458.Google Scholar
  266. [35]
    Mann, H.: Untersuchung über Wabenzellen bei allgemeiner Minkowskischer Metrik. Monatsh. Math. Phys. 42 (1935), 417–424.Google Scholar
  267. [78]
    Mather, M.: The number of non-homogeneous lattice points in plane subsets. Math. Proc. Cambridge Philos. Soc. 83 (1978), 25–29.Google Scholar
  268. [75]
    McMullen, P.: Space tiling zonotopes. Mathematika 22 (1975), 202 211.Google Scholar
  269. [80]
    McMullen, P.: Convex bodies which tile space by translation. In preparation.Google Scholar
  270. [1891]
    Minkowski, H.: Über die positiven quadratischen Formen und über kettenbruchähnliche Algorithmen. J. reine angew. Math. 107 (1891), 278–297Google Scholar
  271. [1891]
    Minkowski, H.: Über die positiven quadratischen Formen und über kettenbruchähnliche Algorithmen. Ges. Abh. 1, 243–260.Google Scholar
  272. [36]
    Mordell, L.J.: Note on an arithmetical problem on linear forms. J. London Math. Soc. 12 (1936), 34–36.Google Scholar
  273. [66]
    Mordell, L.J.: The representation of numbers by some quaternary quadratic forms. Acta Arith. 12 (1966), 47–54.Google Scholar
  274. [70]
    Mordell, L.J.: The minimum of a singular ternary quadratic form. J. London Math. Soc. (2) 2 (1970), 393–394.Google Scholar
  275. [72]
    Mordell, L.J.: Note on the product of n inhomogeneous linear forms. J. Number Theory 4 (1972), 405–407.Google Scholar
  276. [72a]
    Mordell, L.J.: An application of Minkowski’s theorem in the geometry of numbers. Acta Arith. 21 (1972), 51–53.Google Scholar
  277. [64]
    Mullender, P.: Some remarks on a method of Mordell in the geometry of numbers. Acta Arith. 9 (1964), 301–304.Google Scholar
  278. [68]
    Mullender, P.: On lattice coverings and inextensible star bodies. J. London Math. Soc. 43 (1968), 99–104.Google Scholar
  279. [68]
    Narzullaev, H.N.: On Minkowski’s problem relative to a system of inhomogeneous linear forms. Dokl. Akad. Nauk SSSR 180 (1968), 1298–1299Google Scholar
  280. [68]
    Narzullaev, H.N.: On Minkowski’s problem relative to a system of inhomogeneous linear forms. Soviet Math. Dokl. 9 (1968), 766 767.Google Scholar
  281. [69]
    Narzullaev, H.N.: On Minkowski’s problem concerning a system of linear inhomogeneous forms. Mat. Zametki 5 (1969), 107–116.Google Scholar
  282. [70]
    Narzullaev, H.N.: Concerning the product of linear non-homogeneous forms. Trudy Samarkand. Gos. Univ. (N.S.) Vyp. 181 (1970), 75–78.Google Scholar
  283. [74]
    Narzullaev, H.N.: The product of linear inhomogeneous forms. Mat. Zametki 16 (1974), 365–374Google Scholar
  284. [74]
    Narzullaev, H.N.: The product of linear inhomogeneous forms. Math. Notes 16 (1974), 806–812.Google Scholar
  285. [75]
    Narzullaev, H.N.: The representation of a unimodular matrix in the form DOTU for n = 3. Mat. Zametki 18 (1975), 213–221Google Scholar
  286. [75]
    Narzullaev, H.N.: The representation of a unimodular matrix in the form DOTU for n = 3. Math. Notes 18 (1975), 713–719.Google Scholar
  287. [70]
    Narzullaev, H.N., and B.F. Skubenko: On the question of the inhomogeneous Minkowski problem. Trudy Samarkand. Gos. Univ. (N.S.) vyp. 181 (1970), 129–142.Google Scholar
  288. [70a]
    Narzullaev, H.N., and B.F. Skubenko: Certain questions of the generalizations of the central theorem of Minkowski. Trudy Samarkand. Gos. Univ. (N.S.) vyp. 181 (1970), 142–152.Google Scholar
  289. [64]
    Negoescu, N.: Remarks on diophantine approximations. An. Sti. Univ. “Al. I. Cuza” Jasi Seçt. la Mat. N.S.I. 10 (1964), 257–263.Google Scholar
  290. [67]
    Noordzij, P.: Über das Produkt von vier reellen, homogenen linearen Formen. Monatsh. Math. 71 (1967), 436–445.Google Scholar
  291. [48]
    Nosarzewska, M.: Evaluation de la différence entre l’aire d’une région plan convexe et le nombre des points aux coordonnées entières couvert par elle. Colloq. Math. 1 (1948), 305–311.Google Scholar
  292. [62]
    Ohnari, S.: On the lattice constant of regular n-gons (n =0 mod 6). Sûgaku 14 (1962/63) 236238.Google Scholar
  293. Ozeki, M.: Note on the positive definite integral quadratic lattice. J. Math. Soc. Japan 28 (1976) 421–446.Google Scholar
  294. [73]
    Purdy, G.B.: The lattice triple packing of spheres in Euclidean space. Trans. Amer. Math. Soc. 181 (1973), 457–470.Google Scholar
  295. [78]
    Raka, M.: Some inequalities for non-homogeneous quadratic forms. Thesis, Chandigarh 1978. Ramharter, G. [79]: Über das Umkehrproblem für den Minkowskischen Linearformensatz. Acta Arith., to appear.Google Scholar
  296. [70]
    Randol, Burton: A group theoretic lattice-point problem. Problems in analysis 291–295. Princeton, N.J.: Princeton Univ. Press, 1970.Google Scholar
  297. [53]
    Rankin, R.A.: A minimum problem for the Epstein zeta-function. Proc. Glasgow Math. Assoc. 1 (1953), 149–158.Google Scholar
  298. [64]
    Rankin, R.A.: On the minimal points of perfect quadratic forms. Math. Z. 84 (1964), 228–232.Google Scholar
  299. [67]
    Rehman, M.: On the critical determinant of an unbounded star domain of hexagonal symmetry. Panjab Univ. J. Math. (Lahore) 1 (1967), 79–85.Google Scholar
  300. [34]
    Reinhardt, K.: Über die dichteste gitterförmige Lagerung kongruenter Bereiche in der Ebene usw. Abh. Math. Sem. Univ. Hamburg 10 (1934), 216–230.Google Scholar
  301. [23]
    Remak, R.: Verallgemeinerung eines Minkowskischen Satzes 1, 11. Math. Z. 17 (1923), 1–34Google Scholar
  302. [23]
    Remak, R.: Verallgemeinerung eines Minkowskischen Satzes 1, 11. Math. Z. 18 (1923), 173–200.Google Scholar
  303. [47]
    Rogers, C.A.: Existence theorems in the geometry of numbers. Ann. Math. (2) 48 (1947), 9941002.Google Scholar
  304. [51]
    Rogers, C.A.: The closest packing of convex two-dimensional domains. Acta Math. 86 (1951), 309–321Google Scholar
  305. [51]
    Rogers, C.A.: The closest packing of convex two-dimensional domains. Et. corr. 104 (1960), 305–306.Google Scholar
  306. [55]
    Rogers, C.A.: Mean values over the space of lattices. Acta Math. 94 (1955), 249–287.Google Scholar
  307. [58]
    Rogers, C.A.: A note on coverings. Mathematika 4 (1958), 1–6.Google Scholar
  308. [58a]
    Rogers, C.A.: The packing of equal spheres. Proc. London Math. Soc. (3) 8 (1958), 447–465.Google Scholar
  309. [59]
    Rogers, C.A.: Lattice coverings of space. Mathematika 6 (1959), 33–39.Google Scholar
  310. [65]
    Ryskov, S.S.: Some remarks on the types of n-dimensional parallelohedra and on the density of lattice coverings of the space E by equal spheres. Dokl. Akad. Nauk SSSR 162 (1965), 277–300Google Scholar
  311. [65]
    Ryskov, S.S.: Some remarks on the types of n-dimensional parallelohedra and on the density of lattice coverings of the space E by equal spheres. Soviet Math. Dokl. 6 (1965), 664–668.Google Scholar
  312. [67]
    Ryskov, S.S.: Effective realization of a method of Davenport in the theory of coverings. Dokl. Akad. Nauk SSSR 175 (1967), 303–305Google Scholar
  313. [67]
    Ryskov, S.S.: Effective realization of a method of Davenport in the theory of coverings. Soviet Math. Doklady 8 (1967), 865–867.Google Scholar
  314. [69]
    Ryskov, S.S.: The two-dimensional c-function with real parameter. Dokl. Akad. Nauk SSSR 184 (1969), 288 291Google Scholar
  315. [69]
    Ryskov, S.S.: The two-dimensional c-function with real parameter. Soviet Math. Dokl. 10 (1969), 73–77.Google Scholar
  316. [70] Ryskov, S.S.: The polyhedron µ(m)
    and certain extremal problems of the geometry of numbers. Dokl. Akad. Nauk SSSR 194 (1970), 514–517Google Scholar
  317. [70] Ryskov, S.S.: The polyhedron µ(m)
    and certain extremal problems of the geometry of numbers. Soviet Math. Dokl. 11 (1970), 1240–1244.Google Scholar
  318. [71]
    Ryskov, S.S.: On the reduction theory of positive quadratic forms. Dokl. Akad. Nauk SSSR 198 (1971), 1028–1031Google Scholar
  319. [71]
    Ryskov, S.S.: On the reduction theory of positive quadratic forms. Soviet Math. Dokl. 12 (1971), 946–950.Google Scholar
  320. [72] Ryskov, S.S.: Maximal finite groups of n x n integral matrices and full integral automorphism groups of positive quadratic forms (Bravais types).
    Trudy Mat. Inst. Steklov 128 (1972), 183–211, 261.Google Scholar
  321. [72a]
    Ryskov, S.S.: The reduction of positive quadratic forms of n variables in the sense of Hermite, Minkowski and Venkov. Dokl. Akad. Nauk SSSR 207 (1972), 1054–1056Google Scholar
  322. [72a]
    Ryskov, S.S.: The reduction of positive quadratic forms of n variables in the sense of Hermite, Minkowski and Venkov. Soviet Math. Dokl. 13 (1972), 1676–1679.Google Scholar
  323. [73]
    Ryskov, S.S.: On the question of the final n:-optimality of lattices that yield the densest packing of n-dimensional balls. Sibirsk. Math. 2. 14 (1973), 1065–1075, 1158.Google Scholar
  324. [73a]
    Ryskov, S.S.: The theory of Hermite-Minkowski reduction of positive definite quadratic forms. Zap. Nauen. Sem. Leningrad Otdel. Mat. Inst. Steklov 33 (1973), 37–64Google Scholar
  325. [73a]
    Ryskov, S.S.: The theory of Hermite-Minkowski reduction of positive definite quadratic forms. J. Soviet Math. 6 (1976), 651–671.Google Scholar
  326. [73b]
    Ryskov, S.S.: The perfect form Agi: the existence of lattices with a nonfundamental division simplex, and the existence of perfect forms which are not Minkowski-reducible to forms having identical diagonal coefficients. Zap. Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 33 (1973), 65–71Google Scholar
  327. [73b]
    Ryskov, S.S.: The perfect form Agi: the existence of lattices with a nonfundamental division simplex, and the existence of perfect forms which are not Minkowski-reducible to forms having identical diagonal coefficients. J. Soviet Math. 6 (1976), 672–676.Google Scholar
  328. [73c]
    Ryskov, S.S.: C-types of n-dimensional parallelohedra. Dokl. Akad. Nauk. SSSR 212 (1973), 46–49.Google Scholar
  329. [73c]
    Ryskov, S.S.: C-types of n-dimensional parallelohedra. Soviet Math. Dokl. 14 (1973), 1314–1318, (1974).Google Scholar
  330. [74]
    Ryskov, S.S.: Density of an (s,R)-system. Mat. Zametki 16 (1974), 447–454Google Scholar
  331. [74]
    Ryskov, S.S.: Density of an (s,R)-system. Math. Notes 16 (1974), 855–858 (1975).Google Scholar
  332. [75]
    Ryskov, S.S., and E.P. Baranovskii: Solution of the problem of the least dense lattice covering of five-dimensional space by equal spheres. Dokl. Akad. Nauk SSSR 222 (1975), 39–42Google Scholar
  333. [75]
    Ryskov, S.S., and E.P. Baranovskii: Solution of the problem of the least dense lattice covering of five-dimensional space by equal spheres. Soviet Math. Dokl. 6 (1975), 586–590.Google Scholar
  334. [75]
    Ryskov, S.S., and J. Horvath: Estimation of the radius of a cylinder that can be imbedded in every lattice packing of n-dimensional unit balls. Mat. Zametki 17 (1975), 123–128Google Scholar
  335. [75]
    Ryskov, S.S., and J. Horvath: Estimation of the radius of a cylinder that can be imbedded in every lattice packing of n-dimensional unit balls. Math. Notes 17 (1975), 72–75.Google Scholar
  336. [67]
    Sandakova, N.N.: A contribution to the theory of functions of three variables. Dokl. Akad. Nauk SSSR 175 (1967), 535–538Google Scholar
  337. [67]
    Sandakova, N.N.: A contribution to the theory of functions of three variables. Soviet Math. Dokl. 8 (1967), 893–896.Google Scholar
  338. [71]
    Savoy, T.P.: A certain inequality concerning several homogeneous linear forms with rational coefficients. God. Vis§. Tehn. Ucebn. Zaved. Mat. 7 (1971), 9–16 (1973).Google Scholar
  339. [66]
    Sawyer, D.B.: Convex bodies and the diagonal group. J. London Math. Soc. 41 (1966), 466–468.Google Scholar
  340. ]: Lattice points in rotated star sets. J. London Math. Soc. 43 (1968), 131–142.Google Scholar
  341. [76]
    Convex sets and the hexagonal lattice. Quart. J. Math. Oxford Ser. (2) 27 (1976), 217–225.Google Scholar
  342. [59]
    Schmidt, W.M.: Maßtheorie in der Geometrie der Zahlen. Acta Math. 102 (1959), 150–224.Google Scholar
  343. [63]
    Schmidt, W.M.: On the Minkowski-Hlawka theorem. Illinois J. Math. 7 (1963), 18–23.Google Scholar
  344. [68]
    Schmidt, W.M.: Asymptotic formulae for point lattices of boùnded determinant and subspaces of bounded height. Duke Math. J. 35 (1968), 327–340.Google Scholar
  345. [69]
    Schmidt, W.M.: A problem of Schinzel on lattice points. Acta Arith. 15 (1969), 199–203.Google Scholar
  346. [69a]
    Schmidt, W.M.: Badly approximable systems of linear forms. J. Number Theory 1 (1969), 139–154.Google Scholar
  347. [70]
    Schmidt, W.M.: Simultaneous approximation to algebraic numbers by rationals. Acta Math. 125 (1970), 189–201.Google Scholar
  348. [71]
    Schmidt, W.M.: Diophantine approximation and certain sequences of lattices. Acta. Arith. 18 (1971), 165–178.Google Scholar
  349. [76]
    Schmidt, W.M.: Two questions in Diophantine approximation. Monatsh. Math. 82 (1976), 237–245.Google Scholar
  350. [77]
    Schmidt, W.M.: Small fractional parts of polynomials. Conf. Board Math. Sci. Reg. Conf. Ser. 32, Amer. Math. Soc. 1977.Google Scholar
  351. [65]
    Schwald, A.: Über das asymptotische Verhalten der Anzahl von k-tupeln linear unabhängiger Gitterpunkte. Österreich. Akad. Wiss. Math.-Natur. KI. S.-B.II 173 (1965), 195–249.Google Scholar
  352. [66]
    Scott, P.R.: The construction of perfect and extreme forms. Canad. J. Math. 18 (1966), 147–158.Google Scholar
  353. [74]
    Scott, P.R.: On Minkowski’s theorem. Math. Mag. 47 (1974), 277.Google Scholar
  354. [74]
    Shephard, G.C.: Space-filling zonotopes. Mathematika 21 (1974), 261–269.Google Scholar
  355. [73]
    Sidelnikov, V.M.: The densest packing of balls on the surface of the n-dimensional Euclidean sphere, and the number of vectors of a binary code with prescribed code distance. Dokl. Akad. Nauk SSSR 213 (1973), 1029–1032Google Scholar
  356. [73]
    Sidel’nikov, V.M.: The densest packing of balls on the surface of the n-dimensional Euclidean sphere, and the number of vectors of a binary code with prescribed code distance. Soviet Math. Dokl. 14 (1973), 1851–1855.Google Scholar
  357. [74]
    Sidel’nikov, V.M.: New estimates for the closest packing of spheres in n-dimensional Euclidean space. Mat. Sb. (N.S.) 95 (137) (1974), 148–158, 160.Google Scholar
  358. [35]
    Siegel, C.L.: Über Gitterpunkte in konvexen Körpern und ein damit zusammenhängendes Extremalproblem. Acta Math. 65 (1935), 307–323.Google Scholar
  359. [45]
    Siegel, C.L.: A mean value theorem in geometry of numbers. Ann of Math. (2) 46 (1945), 340–347.Google Scholar
  360. [65]
    Skubenko, B.F.: The distribution of integer matrices and calculation of the volume of the fundamental domain of a unimodular group of matrices. Trudy Mat. Inst. Steklov. 80 (1965), 129–144.Google Scholar
  361. [72]
    Skubenko, B.F.: On Minkowski’s conjecture for n=5. Dokl. Akad. Nauk SSSR 205 (1972), 1304–1305Google Scholar
  362. [72]
    Skubenko, B.F.: On Minkowski’s conjecture for n=5. Soviet Math. Dokl. 13 (1972), 1136–1138.Google Scholar
  363. [73]
    Skubenko, B.F.: A proof of Minkowski’s conjecture on the product of n linear inhomogeneous forms in n variables for n=5. Zap. Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 33 (1973), 636Google Scholar
  364. [73]
    Skubenko, B.F.: A proof of Minkowski’s conjecture on the product of n linear inhomogeneous forms in n variables for n=5. J. Soviet Math. 6 (1976), 627–650.Google Scholar
  365. [77]
    Skubenko, B.F.: On a theorem of C’ebotarev. Dokl. Akad. Nauk SSSR 233 (1977)Google Scholar
  366. [77]
    Skubenko, B.F.: On a theorem of C’ebotarev. Soviet Math. Dokl. 18 (1977), 348–350.Google Scholar
  367. [78]
    Skubenko, B.F.: On Minkowski’s conjecture for large n. Trudy Mat. Inst. Steklov 148 (1978), 218–224.Google Scholar
  368. [72]
    Sloane, N.J.A.: Sphere packings constructed from BCH and Justesen codes. Mathematika 19 (1972), 183–190.Google Scholar
  369. [70]
    Spence, E.: Packing of spheres in I,. Glasgow Math. J. 11 (1970), 70–80.Google Scholar
  370. [72]
    Stein, S.K.: A symmetric star body that tiles but not as a lattice. Proc. Amer. Math. Soc. 36 (1972), 543–548.Google Scholar
  371. [74]
    Stein, S.K.: Tiling space by congruent polyhedra. Bull. Amer. Math. Soc. 80 (1974), 819–820.Google Scholar
  372. [72]
    Togrin, M.I.: The Voronoi, Venkov and Minkowski reduction domain. Dokl. Akad. Nauk SSSR 207 (1972), 1070–1073Google Scholar
  373. [72]
    Togrin, M.I.: The Voronoi, Venkov and Minkowski reduction domain. Soviet Math. Dokl. 13 (1972), 1698–1702.Google Scholar
  374. [74]
    Togrin, M.I.: Locally quasidensest lattice packings of spheres. Dokl. Akad. Nauk SSSR 218 (1974), 62–65Google Scholar
  375. [74]
    Togrin, M.I.: Locally quasidensest lattice packings of spheres. Soviet Math. Dokl. 15 (1974), 1288–1292.Google Scholar
  376. [74a]
    Togrin, M.I.: The Bravais, Voronoi and Delone classification of four-dimensional lattices. Dokl. Akad. Nauk SSSR 218 (1974), 528–531Google Scholar
  377. [74a]
    Togrin, M.I.: The Bravais, Voronoi and Delone classification of four-dimensional lattices. Soviet Math. Dokl. 15 (1974), 1386–1390.Google Scholar
  378. [71]
    Surânyi, J.: Lattice point free rectangles. Zahlentheorie (Oberwolfach 1970 ), 195–202, Mannheim: B.I. 1971.Google Scholar
  379. [78]
    Susbaev, S.S.: The Rankin-Sobolev problem on extrema of Epstein’s zeta function. Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 1978, 33–39.Google Scholar
  380. [76]
    Svirdov, D.T.: The Bravais problem for three-dimensional crystallography. Dokl. Akad. Nauk SSSR 228 (1976), 1332–1333.Google Scholar
  381. [53]
    Swinnerton-Dyer, H.P.F.: Extremal lattices of convex bodies. Proc. Cambridge Philos. Soc. 49 (1953), 161–162.Google Scholar
  382. [71]
    Swinnerton-Dyer, H.P.F.: On the product of three homogeneous linear forms. Acta Arith. 18 (1971), 371–385.Google Scholar
  383. [71a]
    Swinnerton-Dyer, H.P.F.: Applications of computers to the geometry of numbers. Computers in algebra and number theory. (Proc. Sympos. Appl. Math., New York 1970 ), 55–62, Providence: Amer. Math. Soc. 1971.Google Scholar
  384. [36]
    Szekeres, G.: On a problem of the lattice plane. J. London Math. Soc. 12 (1936), 88–93.Google Scholar
  385. [36a]
    Szekeres, G.: Note on lattice points within a parallelepiped. J. London Math. Soc. 12 (1936), 36–39.Google Scholar
  386. [56]
    Szüsz, P.: Beweis eines zahlengeometrischen Satzes von G. Szekeres. Acta Math. Acad. Sci. Hungar. 7 (1956), 75–79.Google Scholar
  387. [70]
    Tammela, P.: An estimate of the critical determinant of a two-dimensional convex symmetric domain. Izv. Vys’s. Ucebn. Zaved. Mat. 1970 No. 12 (103), 103–107.Google Scholar
  388. [73a]
    Tammela, P.: The Hermite-Minkowski domain of reduction of positive definite quadratic forms in six variables. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 33 (1973), 72–89Google Scholar
  389. [73a]
    Tammela, P.: The Hermite-Minkowski domain of reduction of positive definite quadratic forms in six variables. J. Soviet Math. 6 (1976), 677–688.Google Scholar
  390. [73b]
    Tammela, P.: On the reduction theory of positive quadratic forms. Dokl. Akad. Nauk SSSR 209 (1973), 1299–1302Google Scholar
  391. [73b]
    Tammela, P.: On the reduction theory of positive quadratic forms. Soviet Math. Dokl. 13 (1973), 651–655.Google Scholar
  392. [73c]
    Tammela, P.: Two remarks on Bravais manifolds. Zap. Nauk Sem. Leningrad. Otdel. Mat. Inst. Steklov. 33 (1973), 90–93Google Scholar
  393. [73c]
    Tammela, P.: Two remarks on Bravais manifolds. J. Soviet Math. 6 (1976), 689–691.Google Scholar
  394. [75]
    Tammela, P.: On reduction theory of positive quadratic forms. Zap. Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 50 (1975), 6–96.Google Scholar
  395. [77]
    Tammela, P.: The Minkowski reduction domain for positive quadratic forms of seven variables. Zap. Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov 67 (1977), 108–143.Google Scholar
  396. [34]
    Tschebotarev, I.V.: Beweis des Minkoskischen Satzes über lineare inhomogene Formen. Ucen. Zap. Kazansk. Gos. Univ. 94 (1934), 3–16Google Scholar
  397. [34]
    Tschebotarev, I.V.: Beweis des Minkoskischen Satzes über lineare inhomogene Formen. Vierteljschr. naturforsch. Ges. Zürich 85 (1940), 27–30.Google Scholar
  398. [70]
    Varnavides, P.L.: Non-homogeneous binary quadratic forms. Ann. Akad. Sci. Fenn., Ser. AINo. 462 (1970), 1–28.Google Scholar
  399. [70a]
    Varnavides, P.L.: The nonhomogeneous minima of a class of binary quadratic forms. J. Number Theory 2 (1970), 333–341.Google Scholar
  400. [74]
    Vetcinkin, N.M.: The packing of uniform n-dimensional balls that are constructed on error-correcting codes. Studies in the geometry of positive quadratic forms. Ivanov. Gos. Univ. Ucen. Zap. 89 (1974), 87–91.Google Scholar
  401. [8]
    Voronoi, G.F.: Propriétés des formes quadratiques positives parfaites. J. reine angew. Math. 133 (1908), 97–178.Google Scholar
  402. [8a]
    Voronoi, G.F.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les paralléloèdres primitifs I. J. reine angew. Math. 134 (1908), 198–287.Google Scholar
  403. [9]
    Voronoi, G.F.: Nouvelles applications etc. Domaines de formes quadratiques correspondant aux différent types des paralléloèdres primitifs. J. reine angew. Math. 136 (1909), 67–181.Google Scholar
  404. [69]
    Waerden, B.L. van der: Das Minimum von D/(f11f22…f55) für positive quinäre quadratische Formen. Aequationes Math. 2 (1969), 233–247.Google Scholar
  405. [66]
    Watson, G.L.: On the minimum of a positive quadratic form in n(=8), variables. Verification of Blichfeldt’s calculation. Proc. Cambridge Philos. Soc. 62 (1966), 719.Google Scholar
  406. [68]
    Watson, G.L.: Asymmetric inequalities for indefinite quadratic forms. Proc. London Math. Soc. (3) 18 (1968), 95–113.Google Scholar
  407. [70]
    Watson, G.L.: On the minimum points of a positive quadratic form. Mathematika 18 (1970), 60–70.Google Scholar
  408. [71]
    Watson, G.L.: The number of minimum points of a positive quadratic form. Dissert. Math. Rozpr. Mat. 84 (1971), 42 pp.Google Scholar
  409. [63]
    White, G.K.: A refinement of van der Corput’s theorem on convex bodies. Amer. J. Math. 85 (1963), 320–326.Google Scholar
  410. [65]
    White, G.K.: Grid bases in n-space. Quart. J. Math. Oxford (2) 16 (1965), 126–134.Google Scholar
  411. [68]
    Wills, J.M.: Ein Satz über konvexe Mengen und Gitterpunkte. Monatsh. Math. 72 (1968), 451–463.Google Scholar
  412. [54]
    Wolff, K.-H.: Über kritische Gitter im vierdimensionalen Raum (R4). Monatsh. Math. 58 (1954), 38–56Google Scholar
  413. [62]
    Wolff, M.R.: A star domain with densest admissible point set not a lattice. Acta Math. 108 (1962), 53–60.Google Scholar
  414. [64]
    Wolff, M.R.: Application of the domain of action method to |xy| ≤ 1. Illinois J. Math. 8 (1964), 500–522.Google Scholar
  415. [56]
    Woods, A.C.: The anomaly of convex bodies. Proc. Cambridge Philos. Soc. 52 (1956), 406–423.Google Scholar
  416. [58]
    Woods, A.C.: The critical determinant of a spherical cylinder. J. London Math. Soc. 33 (1958), 357–368.Google Scholar
  417. [58a]
    Woods, A.C.: On a theorem of Tschebotarev. Duke Math. J. 25 (1958), 631–638.Google Scholar
  418. [65]
    Woods, A.C.: The densest double lattice packing of four-spheres. Mathematika 12 (1965), 138–142.Google Scholar
  419. [65a]
    Woods, A.C.: Lattice coverings of five space by spheres. Mathematika 12 (1965), 143–150.Google Scholar
  420. [66]
    Woods, A.C.: A note on dense subsets of lattices. J. London Math. Soc. 41 (1966), 742–744.Google Scholar
  421. [66a]
    Woods, A.C.: A generalization of Minkowski’s second inequality in the geometry of numbers. J. Austral. Math. Soc. 6 (1966), 148–152.Google Scholar
  422. [72]
    Woods, A.C.: Covering six-space with spheres. J. Number Theory 4 (1972), 157–180.Google Scholar
  423. [72a]
    Woods, A.C.: On a conjecture of Mahler in the geometry of numbers. Duke Math. J. 39 (1972), 649–655.Google Scholar
  424. [73]
    Woods, A.C.: On a problem of Mahler in the geometry of numbers. Proc. Amer. Math. Soc. 39 (1973), 86–88.Google Scholar
  425. [80]
    Woods, A.C.: Divided cells and a conjecture of Minkowski. To appear.Google Scholar
  426. [81]
    Woods, A.C.: The asymmetric product of three inhomogeneous linear forms. To appear.Google Scholar
  427. [67]
    Worley, R.T.: Asymmetric minima of indefinite ternary quadratic forms. J. Austral. Math. Soc. 7 (1967), 191–238.Google Scholar
  428. [67a]
    Worley, R.T.: Minimum determinant of asymmetric quadratic forms. J. Austral. Math. Soc. 7 (1967), 177–190.Google Scholar
  429. [71]
    Worley, R.T.: Non-negative values of quadratic forms, J. Austral. Math. Soc. 12 (1971), 224–238.Google Scholar
  430. [67]
    Wyner, A.D.: Random packings and coverings of the unit n-sphere. Bell Syst. Tech. J. 46 (1967), 2111–2118.Google Scholar
  431. [69]
    Zassenhaus, H.: On a packing inequality for plane sectorial norm distances. Panjab Univ. J. Math. (Labore) 2 (1969), 1–9.Google Scholar
  432. [29]
    Zitomirskii, O.K.: Verschärfung eines Satzes von Voronoi. Z. Leningrad. fiz.-mat. Obsc. 2 (1929), 131–151.Google Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Peter M. Gruber
    • 1
  1. 1.Institut für AnalysisTechnische UniversitätWienAustria

Personalised recommendations