Skip to main content

Hemispheric Simulation of the Asian Summer Monsoon

  • Chapter
Monsoon Dynamics

Part of the book series: Contributions to Current Research in Geophysics (CCRG) ((CCRG))

Abstract

A three-level, β-plane, filtered model is used to simulate the Northern Hemisphere summer monsoon. A time-averaged initial state, devoid of sub-planetary scale waves, is integrated through 30 days on a 5° latitude-longitude grid. Day 25 through day 30 integrations are then repeated on a 2.5° grid. The planetary-scale waves are forced by time-independent, spatially varying diabatic heating. Energy is extracted via internal and surface frictional processes. Orography is excluded to simplify synoptic-scale energy sources.

During integration the model energy first increases, but stabilizes near day 10. Subsequent flow patterns closely resemble the hemisphere summer monsoon. Climatological features remain quasi-stationary. At 200 mb high pressure dominates the land area, large-scale troughs are found over the Atlantic and Pacific Oceans, the easterly jet forms south of Asia, and subtropical jets develop in the westerlies. At 800 mb subtropical highs dominate the oceans and the monsoon trough develops over the Asian land mass. The planetary scales at all levels develop a realistic cellular structure from the passage of transient synoptic-scale features, e.g., a baroclinic cyclone track develops near 55°N and westward propagating waves form in the easterlies.

Barotropic redistribution of kinetic energy is examined over a low-latitude zonal strip using a Fourier wave-space. In contrast to higher latitudes where the zonal flow and both longer and shorter waves are fed by barotropic energy redistribution from the baroclinically unstable wavelengths, the low-latitude waves have a planetary-scale kinetic energy source. Wave numbers 1 and 2 maintain both the zonal flow and all shorter scales via barotropic transfers. Transient and standing wave processes are examined individually and in combination.

Wave energy accumulates at wave numbers 7 and 8 at 200 mb and at wave number 11 in the lower troposphere. The 800-mb waves are thermally indirect and in the mean they give energy to the zonal flow. These characteristics agree with atmospheric observation. The energy source for these waves is the three wave barotropic transfer. The implications of examining barotropic processes in a Fourier wave-space, vice the more common approach of separating the flow into a mean plus a deviation, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, D. A. (1973), Scale interactions of forced quasi-stationary planetary waves at low latitudes, PhD Dissertation, Dept. of Meteorology, Florida State University, 155 pp.

    Google Scholar 

  • Arakawa, A. (1966), Computational design for long term numerical integration of fluid motion, Computational Physics, 1, 119–145.

    Article  Google Scholar 

  • Aspliden, C. I., Dean, A. G. and Landers, H. (1966), Satellite study, tropical North Atlantic, 1968,Report No. 66–4, Florida State University.

    Google Scholar 

  • Bjerknes, J. (1969), Atmospheric teleconnections from the equatorial Pacific, Mon. Wea. Rev. 97, 163–172.

    Article  Google Scholar 

  • Brown, J. A. (1964), A diagnostic study of tropospheric diabatic heating and the generation of available potential energy, Tellus 16, 371–388.

    Article  Google Scholar 

  • Burger, A. P. (1958), Scale considerations of planetary motions of the atmosphere, Tellus 10, 195–205.

    Article  Google Scholar 

  • Burpee, R. W. (1972), The origin and structure of easterly waves in the lower troposphere of North Africa, J. Atmos. Sci. 29, 77–90.

    Article  Google Scholar 

  • Charney, J. G. (1948), On the scale of atmospheric motions, Geophys. Publ. 17, 17 pp.

    Google Scholar 

  • Charney, J. G. (1963), A note on large-scale motions in the tropics, J. Atmos. Sci. 20, 607–609.

    Article  Google Scholar 

  • Charney, J. G. and Eliassen, A. (1949), A numerical method for predicting the perturbations of the middle latitude westerlies, Tellus 1, 38–54.

    Article  Google Scholar 

  • Colton, D. E. (1973), Barotropic scale interactions in the tropical upper troposphere during the northern summer, J. Atmos. Sci. 30, 1287–1302.

    Article  Google Scholar 

  • Flohn, H. (1968), Contributions to a meteorology of the Tibetan highlands, Atmos. Sci. Paper No. 130, Colorado State Univ., Fort Collins.

    Google Scholar 

  • Holton, J. R. and Colton, D. E. (1972), A diagnostic study of the vorticity balance at 200 mb in the tropics during the northern summer, J. Atmos. Sci. 29, 1124–1128.

    Article  Google Scholar 

  • Kanamitsu, M., Krishnamurti, T. N. and Depradine, C. (1972), On scale interaction in the tropics during northern summer, J. Atmos. Sci. 29, 698–706.

    Article  Google Scholar 

  • Kidson, J. W., Vincent, D. G. and Newell, R. E. (1969), Observational studies of general circulation of the tropics: Long term mean values, Quart. J. Roy. Meteor. Soc. 95, 258–287.

    Article  Google Scholar 

  • Koteswarum, P. (1958), The easterly jet stream in the tropics, Tellus 10, 43–57.

    Article  Google Scholar 

  • Krishnamurti, T. N. (1971a), Tropical east-west circulations during the northern summer, J. Atmos. Sci. 28, 1342–1347.

    Article  Google Scholar 

  • Krishnamurti, T. N. (1971b), Observational studies of the tropical upper tropospheric motion field during the Northern Hemisphere summer, J. Appl. Meteor. 10, 1066–1096.

    Article  Google Scholar 

  • Krishnamurti, T. N. and Hawkins, R. S. (1970), Mid-tropospheric cyclones of the southwest monsoon, J. Appl. Meteor. 9, 440–458.

    Article  Google Scholar 

  • Krishnamurti, T. N. and Rodgers, E. B. (1970), 200-mb wind field June, July, and August, 1967, Report No. 70–2, Dept. of Meteorology, Florida State University, 114 pp.

    Google Scholar 

  • Kuo, H. L. (1949), Dynamic instability of two-dimensional non-divergent flow in a barotropic atmosphere, J. Meteor. 6, 105–122.

    Article  Google Scholar 

  • Lahiff, L. N. (1971), A numerical study of a subtropical marine stable layer, PhD Dissertation, Dept. of Meteorology, Florida State University.

    Google Scholar 

  • Lorenz, E. N. (1955), Available potential energy and the maintenance of the general circulation, Tellus 7, 157–167.

    Article  Google Scholar 

  • Lorenz, E. N. (1972), Barotropic instability of Rossby wave motions, J. Atmos. Sci. 29, 258–264.

    Article  Google Scholar 

  • Mak, M. K. (1969), Laterally driven stochastic motions in the tropics, J. Atmos. Sci. 29, 41–63.

    Article  Google Scholar 

  • Manabe, S. (1969), The atmospheric circulation and the hydrology of the earth’s surface, Mon. Wea. Rev. 97, 739–774.

    Article  Google Scholar 

  • Manabe, S., Smagorinsky, J., Leith, J. L. Jr., and Stone, H. M. (1970), Simulated climatology of a general circulation model with a hydrologic cycle: Iii. Effects of increased horizontal computational resolution, Mon. Wea. Rev. 98, 175–212.

    Article  Google Scholar 

  • Matsuno, T. (1966), Numerical integrations of the primitive equations by a simulated backward difference method, J. Meteor. Soc. Japan 44, 76–84.

    Google Scholar 

  • Oort, A. H. (1964), On estimates of the atmospheric energy cycle, Mon. Wea. Rev. 92, 483–493.

    Article  Google Scholar 

  • Padro, J. (1973), A spectral model for Cisk-barotropic energy sources for tropical waves, Quart. J. Roy. Meteor. Soc. 99, 468–479.

    Article  Google Scholar 

  • Palmer, C. E., Tropical meteorology, in Compendium of Meteorology (Am. Met. Soc. 1951 ), pp. 859–880.

    Google Scholar 

  • Palmer, C. E. (1952), Tropical meteorology, Quart. J. Roy. Meteor. Soc. 82, 123–164.

    Google Scholar 

  • Ramage, C. S. (1959), Hurricane development, J. Meteor. 16, 227–237.

    Article  Google Scholar 

  • Riehl, H. (1945), Waves in the easterlies and the polar front in the tropics, Dept. of Meteorology, Univ. of Chicago Misc. Rept. 17, 79 pp.

    Google Scholar 

  • Riehl, H. (1948), On the formation of typhoons, J. Meteor. 5, 247–264.

    Article  Google Scholar 

  • Riehl, H., Tropical Meteorology, McGraw-Hill (New York, 1954 ), 392 pp.

    Google Scholar 

  • Saltzman, B. (1957), Equations governing the energetics of the large scales of atmospheric turbulence in the domain of wave number, J. Meteor. 14, 513–523.

    Article  Google Scholar 

  • Saltzman, B. (1970), Large-scale atmospheric energetics in the wave-number domain, Rev. Geophys. Space Phys. 8, 289–302.

    Article  Google Scholar 

  • Saltzman, B. and Sankar Rao, M. (1964), Final Report. General Circulation Research, U.S.W.B. Contract No. Cwb-10763.

    Google Scholar 

  • Smagorinsky, J. (1953), The dynamical influence of large scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere, Quart. J. Roy. Meteor. Soc. 79, 342–366.

    Article  Google Scholar 

  • Struning, J. O. and Flohn, H. (1969), Investigations on the atmosphere circulation about Africa,Meteorologisches Institut der Universitat Bonn, 55 pp. (Heft 10).

    Google Scholar 

  • Wallace, J. M. (1970), Time-longitudinal sections of tropical cloudiness (Dec. 1966-Nov. 1967 ). Dept. of Atmos. Sci., Univ. of Washington, Essa, National Satellite Center, Essa Technical Report Nesc 56.

    Google Scholar 

  • Wellck, R. E., Kasahara, A., Washington, W. M. and Desanto, G. (1971), Effect of horizontal resolution in a finite-difference model of the general circulation, Mon. Wea. Rev. 99, 673–683.

    Article  Google Scholar 

  • Yang, C. H. (1967), Nonlinear aspects of the large-scale motion in the atmosphere, Sci. Report No. 08759–1, Dept. of Meteorology and Oceanography, Univ. of Michigan, Ann Arbor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Basel AG

About this chapter

Cite this chapter

Abbott, D.A. (1978). Hemispheric Simulation of the Asian Summer Monsoon. In: Monsoon Dynamics. Contributions to Current Research in Geophysics (CCRG). Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5759-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5759-8_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5760-4

  • Online ISBN: 978-3-0348-5759-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics