Skip to main content

Continuation methods in semiconductor device simulation

  • Chapter
Continuation Techniques and Bifurcation Problems

Abstract

Predictor-corrector continuation methods for characterizing the voltage-current (V, I) behavior of semiconductor devices are presented. Numerical simulations of some complex CMOS structures demonstrate the efficacy of continuation methods; in particular, it is possible to accurately determine the limit points of certain (V, I) curves, corresponding to latchup triggering and holding points. Continuation techniques, coupled with grid adaption, provide substantial improvement in computational efficiency over previous approaches and are well suited to deal with multivalued current responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Bank, Private communication.

    Google Scholar 

  2. R.E. Bank, A-posteriori error estimates, adaptive local mesh refinement and multigrid iteration, in: W. Hackbusch and U. Trottenberg, Eds., Multigrid Methods II (Springer, Berlin, 1986) 7–22.

    Chapter  Google Scholar 

  3. R.E. Bank, PLTMG users’ guide—edition 5.0, Technical report, University of California, San Diego, Dept. of Math., 1988.

    Google Scholar 

  4. R.E. Bank, W.M. Coughran, Jr., W. Fichtner, E.H. Grosse, D.J. Rose and R.K. Smith, Transient simulation of silicon devices and circuits, IEEE Trans. Electr. Dev. ED-32 (1985) 1992–2007.

    Article  Google Scholar 

  5. R.E. Bank and H.D. Mittelmann, Continuation and multi-grid for nonlinear elliptic systems, in: W. Hackbusch and U. Trottenberg, Eds., Multigrid Methods II (Springer, Berlin, 1986) 23–37.

    Chapter  Google Scholar 

  6. R.E. Bank and D.J. Rose, Global approximate Newton methods, Numer. Math. 37 (1981) 279–295.

    Article  Google Scholar 

  7. R.E. Bank, D.J. Rose and W. Fichtner, Numerical methods for semiconductor device simulation, SIAM J. Sci. Stat. Comput. 4 (1983) 416–435.

    Article  Google Scholar 

  8. R.E. Bank and A.H. Sherman, An adaptive, multi-level method for elliptic boundary value problems, Computing 26 (1981) 91–105.

    Article  Google Scholar 

  9. R.E. Bank and A. Weiser, Some a-posteriori error estimates for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.

    Article  Google Scholar 

  10. T.F. Chan, Deflation techniques and block-elimination algorithms for solving bordered singular systems, SIAM J. Sci. Stat. Comput. 5 (1984) 121–134.

    Article  Google Scholar 

  11. W.M. Coughran, Jr., E.H. Grosse and D.J. Rose, CAzM: A circuit analyzer with macromodeling, IEEE Trans. Electr. Dev. ED-30 (1983) 1207–1213.

    Article  Google Scholar 

  12. W.M. Coughran, Jr., E.H. Grosse and D.J. Rose, Aspects of computational circuit analysis, in: W. Fichtner and M. Morf, Eds., VLSI CAD Tools and Applications (Kluwer Academic Publishers, Dordrecht, 1987) 105–127.

    Chapter  Google Scholar 

  13. W.M. Coughran, Jr., M.R. Pinto and R.K. Smith, Computational methods for steady-state CMOS latchup simulation, IEEE Trans. Comput. Aided Design CAD-7 (1988) 307–323.

    Article  Google Scholar 

  14. A. DeMari, An accurate numerical one-dimensional solution of the P-N junction under arbitrary transient conditions, Solid-State Electron. 11 (1968) 1021–1053.

    Article  Google Scholar 

  15. A. DeMari, An accurate numerical steady-state one-dimensional solution of the P-N junction, Solid-State Electron. 11 (1968) 33–58.

    Article  Google Scholar 

  16. W. Fichtner, D.J. Rose and R.E. Bank, Semiconductor device simulation, IEEE Trans. Electr. Dev. ED-30 (1983) 1018–1030.

    Article  Google Scholar 

  17. H.B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in: P. Rabinowitz, Eds., Applications of Bifurcation Theory (Academic Press, New York, 1977) 359–384.

    Google Scholar 

  18. T. Kerkhoven, Coupled and decoupled algorithms for semiconductor simulation, PhD thesis, Yale University, 1985.

    Google Scholar 

  19. P.A. Markowich, CA. Ringhofer and A. Steindl, Computation of current-voltage characteristics in a semiconductor device arc-length continuation, IMA J. Appl. Math. 33 (1984) 175–188.

    Article  Google Scholar 

  20. M.S. Mock, Analysis of Mathematical Models of Semiconductor Devices (Boole Press, Dublin, 1983)

    Google Scholar 

  21. M.R. Pinto, Numerical Simulation for VLSI Device Structures: Methodology and Application. to appear.

    Google Scholar 

  22. M.R. Pinto and R.W. Dutton, An efficient numerical model of CMOS latch-up, IEEE Electr. Dev. Let. EDL-4 (1983) 414–417.

    Article  Google Scholar 

  23. G. Pönisch and H. Schwetlick, Ein lokal überlinear konvergentes Verfahren zur Bestimmung von Rückkehrpunkten implizit definierter Raumkurven, Numer. Math. 38 (1982) 455–466.

    Article  Google Scholar 

  24. C.H. Price, Two-dimensional simulation of semiconductor devices, PhD thesis, Stanford University, 1982.

    Google Scholar 

  25. C.S. Rafferty, M.R. Pinto and R.W. Dutton, Iterative methods in semiconductor device simulation, IEEE Trans. Electr. Dev. ED-32 (1985) 2018–2027.

    Article  Google Scholar 

  26. W.C. Rheinboldt, Solution fields of nonlinear equations and continuation methods, SIAM J. Numer. Anal. 17 (1980) 221–237.

    Article  Google Scholar 

  27. W.C. Rheinboldt, Numerical Analysis of Parameterized Nonlinear Equations (Wiley-Interscience, New York, 1986).

    Google Scholar 

  28. W.C. Rheinboldt, On the computation of multi-dimensional solution manifolds of parameterized equations, Numer. Math. 53 (1988) 165–181.

    Article  Google Scholar 

  29. D. Scharfetter and H.K. Gummel, Large-signal analysis of a silicon Read diode oscillator, IEEE Trans. Electr. Dev. ED-16 (1969) 64–77.

    Article  Google Scholar 

  30. R.K. Smith, W.M. Coughran, Jr., W. Fichtner, D.J. Rose and R.E. Bank, Some aspects of semiconductor device simulation, in: R. Glowinski and J.-L. Lions, Eds., Computing Methods in Applied Sciences and Engineering, VII (North-Holland, Amsterdam, to appear).

    Google Scholar 

  31. S.M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, New York, 2nd ed., 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

Coughran, W.M., Pinto, M.R., Smith, R.K. (1990). Continuation methods in semiconductor device simulation. In: Mittelmann, H.D., Roose, D. (eds) Continuation Techniques and Bifurcation Problems. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 92. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5681-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5681-2_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2397-4

  • Online ISBN: 978-3-0348-5681-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics