Skip to main content

Numerical computation of heteroclinic orbits

  • Chapter

Abstract

We give a numerical method for the computation of heteroclinic orbits connecting two saddle points in ℝ2. These can be computed to very high period due to an integral phase condition and an adaptive discretization. We can also compute entire branches (one-dimensional continua) of such orbits. The method can be extended to compute an invariant manifold that connects two fixed points in ℝn. As an example we compute branches of traveling wave front solutions to the Huxley equation. Using weighted Sobolev spaces and the general theory of approximation of nonlinear problems we show that the errors in the approximate wave speed and in the approximate wave front decay exponentially with the period.

Supported in part by NSERC (Canada), A4274 and FCAC (Quebec) EQ1438.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Aronson, Density dependent interaction-diffusion systems, in: Dynamics and Modelling of Reactive Systems (Academic Press, New York, 1980) 161–176.

    Google Scholar 

  2. I. Babuška, The finite element method for infinite domains, Math. Comp. 26 (1972) 1–11.

    Google Scholar 

  3. M. Bieterman and I. Babuška, An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type, J. Comput. Physics 63 (1986) 33–66.

    Article  Google Scholar 

  4. J. Buckmaster and G.S.S. Ludford, Theory of Laminar Flames (Cambridge University Press, Cambridge, 1982).

    Book  Google Scholar 

  5. J. Descloux and J. Rappaz, Approximation of solution branches of nonlinear equations, R.A.I.R.O. 16 (1982) 319–349.

    Google Scholar 

  6. E.J. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, Cong. Numer. 30 (1981) 265–284.

    Google Scholar 

  7. E.J. Doedel and J.P. Kernévez, AUTO: Software for continuation and bifurcation problems in ordinary differential equations, Applied Mathematics Report, California Institute of Technology, 1986, 226 pages.

    Google Scholar 

  8. E.J. Doedel and M.J. Friedman, Numerical computation and continuation of invariant manifolds connecting fixed points, in preparation.

    Google Scholar 

  9. E.J. Doedel and J.P. Kernévez, A numerical analysis of wave phenomena in a reaction diffusion model, in: H.G. Othmer, Ed., Nonlinear Oscillations in Biology and Chemistry, Lecture Notes Biomath. 66 (Springer, Berlin, 1986) 261–273.

    Chapter  Google Scholar 

  10. B.D. Hassard, Computation of invariant manifolds, in: P.J. Holmes, Ed., New Approaches to Nonlinear Problems in Dynamics (SIAM, Philadelphia, PA, 1980) 27–42.

    Google Scholar 

  11. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes Math. 840 (Springer, Berlin, 1981).

    Google Scholar 

  12. T.M. Hagstrom and H.B. Keller, Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains, Math. Comput. 48 (1987) 449–470.

    Article  Google Scholar 

  13. T.M. Hagstrom and H.B. Keller, The numerical calculation of traveling wave solutions of nonlinear parabolic equations, SIAM J. Sci. Stat. Comput. 7 (1986) 978–988.

    Article  Google Scholar 

  14. H.B. Keller, Approximation methods for nonlinear problems with application to two-point boundary value problems, Math. Comput. 29 (1975) 464–474.

    Article  Google Scholar 

  15. M. Lentini and H.B. Keller, Boundary value problems over semi infinite intervals and their numerical solution, SIAM J. Numer. Anal 17 (1980) 557–604.

    Article  Google Scholar 

  16. R.M. Miura, Accurate computation of the stable solitary wave for the Fitz-Hugh-Nagumo equation, J. Math. Biology 13 (1982) 247–269.

    Article  Google Scholar 

  17. H.G. Othmer, Nonlinear wave propagation in reacting systems, J. Math. Biology 2 (1975) 133–163.

    Article  Google Scholar 

  18. J. Rinzel and D. Terman, Propagation phenomena in a bistable reaction-diffusion system, SIAM J. Appl. Math. 42 (1982) 1111–1137.

    Article  Google Scholar 

  19. R.D. Russell and J. Christiansen, Adaptive mesh selection strategies for solving boundary value problems, SIAM J. Numer. Anal. 15 (1978) 59–890.

    Article  Google Scholar 

  20. D.H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Mathematics 22 (1976) 312–355.

    Article  Google Scholar 

  21. D. Terman, Traveling wave solutions arising from a combustion model, IMA Preprint Series 216, University of Minnesota, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

Doedel, E.J., Friedman, M.J. (1990). Numerical computation of heteroclinic orbits. In: Mittelmann, H.D., Roose, D. (eds) Continuation Techniques and Bifurcation Problems. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 92. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5681-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5681-2_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2397-4

  • Online ISBN: 978-3-0348-5681-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics