Skip to main content

Abstract

We study and develop efficient and versatile Predictor-Corrector continuation methods for large sparse problems. The first object is to show how special solving methods for a large sparse linear systems can be incorporated into the basic steps of a continuation method. Next we describe how to use a special nonlinear conjugate gradient method to perform the corrector phase. It is shown how such methods can be used to detect bifurcation points, and how to trace bifurcating solution branches by using local perturbations. Finally, a numerical example involving bifurcating branches of a nonlinear eigenvalue problem is given.

Partially supported by UNI-ONR N0014-86K0687.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method with inexact line search, IMA J. Numer. Anal. 5 (1985) 121–124.

    Article  Google Scholar 

  2. E.L. Allgower and C.-S. Chien, Continuation and local perturbation for multiple bifurcations, SIAM J. Sci. Stat. Comput. 7 (1986) 1265–1281.

    Article  Google Scholar 

  3. E.L. Allgower and K. Georg, Predictor-corrector and simplicial methods for approximating fixed points and zero points of nonlinear mappings, in: A. Bachern, M. Grötschel and B. Korte, Eds., Mathematical Programming: The State of the Art (Springer, Berlin/Heidelberg/New York, 1983).

    Google Scholar 

  4. R.E. Bank and T.F. Chan, PLTMGC: A multi-grid continuation program for parameterized nonlinear elliptic systems, SIAM J. Sci. Stat. Comput. 7 (1986) 540–559.

    Article  Google Scholar 

  5. M.S. Berger, Nonlinearity and Functional Analysis (Academic Press, New York/London, 1977).

    Google Scholar 

  6. D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York/London, 1984).

    Google Scholar 

  7. W.-J. Beyn, On discretizations of bifurcation problems, in: H.D. Mittelmann and H. Weber, Eds., Bifurcation Problems and their Numerical Solution, Internat. Ser. Numer. Math. 54 (Birkhäuser, Basel, 1980) 46–76.

    Google Scholar 

  8. W.-J. Beyn, Lösungszweige nichtlinearer Randwertaufgaben und ihre Approximation mit dem Differenzenverfahren, Habilitationsschrift, Univ. Konstanz, 1981.

    Google Scholar 

  9. W.-J. Beyn, Defining equations for singular solutions and numerical applications, in: T. Küpper, H.D. Mittelmann and H. Weber, Eds., Numerical Methods for Bifurcation Problems, Internat. Ser. Numer. Math. 70 (Birkhäuser, Basel, 1984) 42–56.

    Google Scholar 

  10. J.H. Bolstad and H.B. Keller, A multigrid continuation method for elliptic problems with folds, SIAM J. Sci. Stat. Comput. 7 (1986) 1081–1104.

    Article  Google Scholar 

  11. F. Brezzi, J. Rappaz and P.A. Raviart, Finite dimensional approximation of nonlinear problems, Part 1: Branches of nonsingular solutions, Numer. Math. 36 (1980) 1–25; Part 2: Limit points, Numer. Math. 37 (1980) 1-28; Part 3: Simple bifurcation points, Numer. Math. 38 (1981) 1-30.

    Article  Google Scholar 

  12. T.F. Chan, Techniques for large sparse systems arising from continuation methods, in: T. Küpper, H. Mittelmann and H. Weber, Eds., in: Numerical Methods for Bifurcation Problems, Internat. Ser. Numer. Math. 70 (Birkhäuser, Basel, 1984) 116–128.

    Google Scholar 

  13. T.F. Chan and H.B. Keller, Arclength continuation and multi-grid techniques for nonlinear eigenvalue problems, SIAMJ. Sci. Stat. Comput. 3 (1982) 173–194.

    Article  Google Scholar 

  14. S.N. Chow and J.K. Hale, Methods of Bifurcation Theory (Springer, Berlin/Heidelberg/New York, 1982).

    Book  Google Scholar 

  15. A.I. Cohen, Rate of convergence of several conjugate gradient algorithms, SIAM J. Numer. Anal. 9 (1972) 248–259.

    Article  Google Scholar 

  16. M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues. J. Funct. Anal. 8 (1971) 321–340.

    Article  Google Scholar 

  17. C. Den Heijer and W.C. Rheinboldt, On steplength algorithms for a class of continuation methods, SIAM J. Numer. Anal. 18 (1981) 925–948.

    Article  Google Scholar 

  18. J.E. Dennis, Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cüffs, NJ, 1983).

    Google Scholar 

  19. J.E. Dennis, Jr. and K. Turner, Generalized conjugate directions, Linear Algebra Appl. 88/89 (1987) 187–209.

    Article  Google Scholar 

  20. R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients, Comput. J. 7 (1984) 149–154.

    Article  Google Scholar 

  21. K. Georg, On tracing an implicitly defined curve by quasi-Newton steps and calculating bifurcation by local perturbation, SIAM J. Sci. Stat. Comput. 2 (1981) 35–50.

    Article  Google Scholar 

  22. K. Georg, Zur numerischen Realisierung von Kontinuitätsmethoden mit Prädiktor-Korrektor-oder simplizialen Verfahren, Habilitationsschrift, Univ. Bonn, 1982.

    Google Scholar 

  23. K. Georg, A note on stepsize control for numerical curve following, in: B.C. Eaves, F.J. Gould, H.-O. Peitgen and M.J. Todd, Eds., Homotopy Methods and Global Convergence (Plenum Press, New York, 1983) 145–154.

    Chapter  Google Scholar 

  24. P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, New York/London, 1981).

    Google Scholar 

  25. R. Glowinski, H.B. Keller and L. Reinhart, Continuation-conjugate gradient methods for the least square solution of nonlinear boundary value problems, SIAM J. Sci. Stat. Comput. 6 (1985) 793–832.

    Article  Google Scholar 

  26. G.H. Golub and Ch.F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, MD, 1983).

    Google Scholar 

  27. H. Jürgens, H.-O. Peitgen and D. Saupe, Topological perturbations in the numerical study of nonlinear eigenvalue and bifurcation problems, in: S.M. Robinson, Ed., Analysis and Computation of Fixed Points (Academic Press, New York/London, 1980) 139–181.

    Google Scholar 

  28. J.P. Keener and H.B. Keller, Perturbed bifurcation theory, Arch. Rational Mech. Anal. 50 (1974) 159–175.

    Article  Google Scholar 

  29. H.B. Keller, Nonlinear bifurcation, J. Differential Equations 7 (1970) 417–434.

    Article  Google Scholar 

  30. H.B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in: P. Rabinowitz, Ed., Application of Bifurcation Theory (Academic Press, New York/London, 1977) 359–384.

    Google Scholar 

  31. H.B. Keller, Lectures on Numerical Methods in Bifurcation Problems (Springer, Berlin/Heidelberg/New York, 1987).

    Google Scholar 

  32. T. Küpper, H.D. Mittelmann and H. Weber, Eds., Numerical Methods for Bifurcation Problems, Internat. Ser. Numer. Math. 70 (Birkhäuser, Basel, 1984).

    Google Scholar 

  33. T. Küpper, R. Seydel and H. Troger, Eds., Bifurcation: Analysis, Algorithms, Applications, Internat. Ser. Numer. Math. 79 (Birkhäuser, Basel, 1987).

    Google Scholar 

  34. G.P. McCormick and K. Ritter, Alternate proofs of the convergence properties of the conjugate gradient method, J. Optim. Theor. Appl. 13 (1974) 497–518.

    Article  Google Scholar 

  35. H.D. Mittelmann, Continuation near symmetry-breaking bifurcation points, in: T. Küpper, H. Mittelmann and H. Weber, Eds., Numerical Methods for Bifurcation Problems, Internat. Ser. Numer. Math. 70 (Birkhäuser, Basel, 1984).

    Google Scholar 

  36. L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute, New York, 1974.

    Google Scholar 

  37. E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjugées, Rev. Franc. Inf. Rech. Oper. 16 (1969) 35–43.

    Google Scholar 

  38. M.J.D. Powell, Restart procedures for the conjugate gradient method, Math. Programming 12 (1977) 241–254.

    Article  Google Scholar 

  39. M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method, in: D.F. Griffiths, Ed. Numerical Analysis, Dundee 1983, Lecture Notes in Math. (Springer, Berlin/Heidelberg/New York, 1984).

    Google Scholar 

  40. P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971) 487–513.

    Article  Google Scholar 

  41. L. Reinhart, Sur la résolution numérique de problèmes aux limites non linéaires par des méthodes de continuation, Thèse de 3-ème cycle, Univ. Paris VI, 1980.

    Google Scholar 

  42. L. Reinhart, On the numerical analysis of the von Karman equations: Mixed finite element approximation and continuation techniques, Numer. Math. 39 (1982) 371–404.

    Article  Google Scholar 

  43. W.C. Rheinboldt, Numerical methods for a class of finite dimensional bifurcation problems, SIAM J. Numer. Anal. 15 (1978) 1–11.

    Article  Google Scholar 

  44. W.C. Rheinboldt, Numerical analysis of continuation methods for nonlinear structural problems, Comput. & Structures 13 (1981) 130–141.

    Article  Google Scholar 

  45. W.C. Rheinboldt, Numerical Analysis of Parametrized Nonlinear Equations (Wiley, New York, 1986).

    Google Scholar 

  46. Y. Saad and M. Schultz, GMRES: a generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856–869.

    Article  Google Scholar 

  47. H. Schwetlick, On the choice of steplength in path following methods, Z. Angew. Math. Mech. 64 (1984) 391–396.

    Article  Google Scholar 

  48. L.F. Shampine and M.K. Gordon, Computer solutions of ordinary differential equations: The initial value problem (Freeman, New York, 1975).

    Google Scholar 

  49. J. Stoer, Solution of large linear systems of equations by conjugate gradient type methods, in: A. Bachern, M. Grötschel and B. Korte, Eds., Mathematical Programming: The State of the Art (Springer, Berlin/Heidelberg/New York, 1983) 540–565.

    Chapter  Google Scholar 

  50. R. Winther, Some superlinear convergence results for the conjugate gradient method, SIAM J. Numer. Anal. 17 (1980) 14–18.

    Article  Google Scholar 

  51. H.F. Walker, Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Stat. Comput. 9 (1988) 152–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

Allgower, E.L., Chien, CS., Georg, K. (1990). Large sparse continuation problems. In: Mittelmann, H.D., Roose, D. (eds) Continuation Techniques and Bifurcation Problems. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 92. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5681-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5681-2_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2397-4

  • Online ISBN: 978-3-0348-5681-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics