Skip to main content

Multicyclicity Phenomenon. I. An Introduction and Maxi-Formulas

  • Chapter
Toeplitz Operators and Spectral Function Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 42))

Abstract

The notion of the spectral multiplicity plays an important role in the theory of self-adjoint and normal operators. It serves a complete unitary invariant for operators of these classes, and in fact forms a background of the whole theory. As the main object it is proved to be the multiplicity function µ N (·) of a normal operator N on a separable Hubert space H, i.e. the dimension function

$$ {\mu _N}\left( \zeta \right) = \dim \;H\left( \zeta \right) $$

of the spectral decomposition of N

$$ H \cong \int\limits_\mathbb{C} { \oplus \;H\left( \zeta \right)d\lambda \left( \zeta \right)} $$

,

$$ Nf\left( \zeta \right)\;\; = \zeta f\left( \zeta \right),\quad \quad \quad \quad \lambda \;\; - \;\;a.e.\;\;\zeta $$

where ≅ stands for a unitary equivalence and λ for a Borel (scalar) spectral measure of N .In principle, all properties of N can be derived from properties of the multiplicity function µ N (·). In the case of a pure point spectrum one has simply

$$ {\mu _N}\left( \zeta \right)\;\; = \dim \;Kei\;\left( {T - \zeta I} \right),\quad \quad \quad \quad \lambda \;\; - \;\;a.e.\;\;\zeta $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beauzamy, B.: Introduction to operator theory and invariant subspaces, Publications de l’Université Paris VII, 1988, pp.339.

    Google Scholar 

  2. Conway, J. B. : Subnormal operators, Pitman, Boston, 1981.

    Google Scholar 

  3. Nairnark, M.A., Loginov, A.I., Shulman, V.S.: Non-self-adjoint algebras of operators in Hilbert space, Itogi Nauki: Mat.Anal., 12, VININI, Moscow, 1974, 413–465. (Russian). English, transl. in Soviet Math, Surveys 5 (1976).

    Google Scholar 

  4. Nikol’skii, N.K.: Selected problems of weighted approximation and spectral analysis, Proceedings Steklov Inst, of Math., 120 (1974), AMS, 1976.

    Google Scholar 

  5. Khrushchev, S.V.: Problem of simultaneous approximations and removing of singularities of Cauchy integrals, Proceedings Steklov Inst, of Math., 130 (1973), 124–195; AMS, 1979, Issue 4.

    Google Scholar 

  6. Wonham, M.W.: Linear Multivariable Gontrol, Springer-Verlag, Berlin, 1974.

    Book  Google Scholar 

  7. Fuhrmann, P.A.; Linear Systems and Operators in Hilbert Space, McGraw-Hill, 1981.

    Google Scholar 

  8. Nikolskii, U.K., and Vasyunin, V.I.: Control subspaces of minimal dimension and spectral multiplicities, Invariant Subspaces, Other Topics, Birkhäuser Verlag, 1981, 163–179.

    Google Scholar 

  9. Nikolskii, N.K. and Vasyunin, V.I.: Control subspaces of minimal dimension. Elementary introduction. Discotheca, Zap. Nauchn.Semin. Leningrad Otdel. Mat.Inst.Steklov.(LOMI), 113(1981), 41–75. (Russian). English transi, in J.Soviet. Math.

    Google Scholar 

  10. Nikolskii, N.K. and Vasyunin, V.I.: Control Subspaces of minimal dimension and rootvectors, Integral Equations and Operator Theory, 6, N 2 (1983), 274–311.

    Article  Google Scholar 

  11. Nikolskii, N.K. and Vasyunin, V.I.: Control subspaces of minimal dimension, unitary and model operators, J.Operator Theory, 10 (1983), 307–330.

    Google Scholar 

  12. Glimm, J. and Jaffe, A.: Quantum Physics, Springer-Verlag, 1931.

    Google Scholar 

  13. Vasyunin, V.I. and Karayev, M.T.: The multiplicity of some contractions, Zap.Naucn.Sem. Leningrad. Otdel.Mat.Inst. Steklov. (LOMI), 157 (1987), 23–29 (Russian).

    Google Scholar 

  14. Nikol’skii, U.K.: Treatise on the Shift Operator, Springer-Verlag, 1986.

    Book  Google Scholar 

  15. Sz.-Nagy, B. and Foias, C.: Harmonic analysis of operators on Hilbert space, North Holland-Akadémiai Kiado, Amsterdam-Budapest, 1970.

    Google Scholar 

  16. Nikolskii, N.K. : The present state of the spectral analysis -synthesis problem. I, Operator Theory in. Function Spaces (Proc.School, Novosibirsk, 1975), 1977, 240–282. AMS Transi. ser.2, 124 0984), 97–129.

    Google Scholar 

  17. Mkolskii, I.K.: Invariant subspaces in operator theory and function theory, Itogi Nauki: Mat.Anal., 12, 12, VINITI, Moscow, 1974, 199–412. (Russian). English transi, in Soviet Math. Surveys 5 (1976).

    Google Scholar 

  18. Herrero, D.A.: On multicyclic operators, Integral Equations and Operator Theory, 1 (1978), 57–102.

    Article  Google Scholar 

  19. Volberg, A.L.: Asymptotically holomorphic functions and their applications, Dissertation, Steklov Math.Inst., Leningrad, 1989.

    Google Scholar 

  20. Markus, A.S.: The problem of spectral synthesis for operators with point spectrum, Izv.Akad.Nauk SSSR, Ser.Mat. 34 (1970), 662–688. (Russian). English Trans, in Math. USSR Isv, 4 (1970), 670–696.

    Google Scholar 

  21. Wolff, J.: Sur les series \( \sum\limits_1^\infty {\frac{{{A_k}}} {{z - {\alpha _k}}}} \), C.r. Acad.sci., 173 (1921), 1327–1328.

    Google Scholar 

  22. Denjoy, A.: Sur les séries de fractions rationnelles, Bull. soc.math. France, 52 (1924), 418–434.

    Google Scholar 

  23. Gončar, A.A.: On quasianalytic continuation of analytic functions across a Jordan arc, Dorkl.Akad.Nauk SSSR, 166 (1966), 1028–1031. (Russian). English transi, in Soviet Math.Dokl. 7 (1966), 213–216.

    Google Scholar 

  24. Bourdon, P.S. and Shapiro, J.ïï.î Spectral synthesis and common cyclic vectors (to appear).

    Google Scholar 

  25. Bourdon, P.S. and Shapiro, J.H.: Cyclic Composition Operators on H (to appear).

    Google Scholar 

  26. Solomyak, B.M.: Multiplicity, calculi and multiplication operators, Sibirskii Matem.Zhurn. 29, N 2 (1988), 167–175. (Russian).

    Google Scholar 

  27. Hikol’skii, N.K.: Ha-plitz operators: a survey of some recent results, Proc.Conf.Operators and Function Theory, Lancaster 1984, 87–137, Reidel, 1984.

    Google Scholar 

  28. Nikol’skii, N.K.: Designs for calculating the spectral multiplicity of orthogonal sums, Zapiski Nauchn.Semin. LOMI, 126 (1983), 150–158; English transi, in J.Soviet Math. 27, N 1 (1984).

    Google Scholar 

Download references

Authors

Editor information

N. K. Nikolskii

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Basel AG

About this chapter

Cite this chapter

Nikolskii, N.K. (1989). Multicyclicity Phenomenon. I. An Introduction and Maxi-Formulas. In: Nikolskii, N.K. (eds) Toeplitz Operators and Spectral Function Theory. Operator Theory: Advances and Applications, vol 42. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5587-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5587-7_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5589-1

  • Online ISBN: 978-3-0348-5587-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics