Stability of the positive Equilibrium Solution for a Class of Quasilinear Diffusion Equations

  • Piero de Mottoni
Part of the International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’analyse Numérique book series (ISNM, volume 38)


Asymptotic stability results are proved for the positive equilibrium solution of a generalized Verhulst equation with diffusion. It is shown that the (unique) positive equilibrium solution, whenever it exists, is asymptotically stable in the \(H_{0}^{1}\) norm and globally attractive in the L2 norm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auchmuty, J.F.G.: Liapunov methods and equations of parabolic type, in Nonlinear problems in the physical sciences and biology, Proc. Battelle Summer Inst. 1972, Stakgold, L, Joseph, D.D., Sattinger, D.H. Eds., Lecture notes in mathematics, N. 322, Berlin-Heidelberg-New York, Springer 1973, 1-14.Google Scholar
  2. 2.
    Barbu, Viorel: Nonlinear semigroups and differential equations in Banach spaces, Groningen, Noordhoff 1976.Google Scholar
  3. 3.
    Hahn, Wolfgang: Theorie und Anwendungen der direkten Methode von Liapunov, Berlin-Göttingen-Heidelberg, Springer 1959.CrossRefGoogle Scholar
  4. 4.
    LaSalle, J.P.: An invariance principle in the theory of stability, in International symposium on differential equations and dynamical systems, Hale, J.K. and LaSalle, J.P. Eds., New York, Academic Press 1967.Google Scholar
  5. 5.
    de Mottoni, P., Talenti, G., Tesei, A.: Stability results for a class of nonlinear parabolic equations, Ann. di Mat. Pura e Appl., in press.Google Scholar
  6. 6.
    Nemytskii, V.V., Stepanov, V.V.: Qualitative theory of differential equations, Princeton, Princeton University press 1960.Google Scholar
  7. 7.
    Sattinger, D.H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univers. Mathem. Journ., 21 (1972), 979–1000.Google Scholar
  8. 8.
    Schröder, J.: On linear differential inequalities, J. Math. Anal. Appl., 22 (1968), 188–216.CrossRefGoogle Scholar
  9. 9.
    Stakgold, I., Payne, L.E.: Nonlinear problems in nuclear reactor analysis, in Nonlinear problems... quoted in Ref. 1 above, 298-307.Google Scholar

Copyright information

© Springer Basel AG 1977

Authors and Affiliations

  • Piero de Mottoni
    • 1
  1. 1.Istituto per le Applicazioni del Calcolo “M. Picone”Consiglio Nazionale delle RicercheRomaAustralia

Personalised recommendations