Advertisement

Abstract

Let X be a complex Banach-space and B(X) the algebra of bounded linear operators on X. When X is of finite dimension we shall make this explicit by writing X n for X.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.M. Anselone and L.B. Rail, The solution of characteristic value-vector problems by Newton’s method, Numer. Math 11 (1968), 38–45.CrossRefGoogle Scholar
  2. 2.
    E.M. Barston, Eigenvalue problems for Lagrangian systems, J. Math. Phys. 13 (1972), 720–725.CrossRefGoogle Scholar
  3. 3.
    H. Bart, Voles of the resolvent of an operator function, Proc. Roy. Irish Acad. 74A (1974), 169–184.Google Scholar
  4. 4.
    H. Bart, M.A. Kaashoek and D.C. Lay, Stability properties of finite meromorphic operator functions, I, II and III, Indag. Math. 36 (1974), 217–259.Google Scholar
  5. 5.
    F.L. Bauer, Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme, Z.A.M.P. 8, (1975), 214–235.CrossRefGoogle Scholar
  6. 6.
    H. Baumgärtel, Endlichdimensionale Analytische Störangsthéorie, Akad. Verlag, Berlin, 1972.Google Scholar
  7. 7.
    S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Internat. Ser. Mon. on Physics, Clarendon Press, Oxford, 1961.Google Scholar
  8. 8.
    G.W. Cross, Square roots of linear transformations, Ph.D. Thesis, Dept. of Math., Univ. of Calgary, 1975.Google Scholar
  9. 9.
    G.W. Cross and P. Lancaster, Square roots of complex matrices, Lin. and Multilin. Alg. 1 (1974), 289–293.CrossRefGoogle Scholar
  10. 10.
    J.E. Denis, J.F. Traub and R.P. Weber, The algebraic theory of matrix polynomials, SIAM. J. Numer. Anal. (To appear).Google Scholar
  11. 11.
    J.E. Denis, J.F. Traub and R.P. Weber, Algorithms for solvents of matrix polynomials, SIAM J. Numer. Anal. (To appear).Google Scholar
  12. 12.
    A. Friedman and M. Shinbrot, Nonlinear eigenvalue problems, Acta Math. 121 (1968), 77–125.CrossRefGoogle Scholar
  13. 13.
    F.R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1960.Google Scholar
  14. 14.
    I. Gohberg, M.A. Kaashoek and D.C. Lay, Equivalence, linearisation and decomposition of holomorphic operator functions (To appear).Google Scholar
  15. 15.
    I.C. Gohberg and M.G. Krein, Introduction to the theory of Linear Nonselfadjoint Operators, Amer. Math. Soc, Providence, 1969. (Translation from Russian).Google Scholar
  16. 16.
    I.C. Gohberg, P. Lancaster and L. Rodman, Spectral analysis of matrix polynomials I. Canonical forms and divisors, J. Lin. Alg. Applies. (To appear).Google Scholar
  17. 17.
    I. Gohberg, P. Lancaster and L. Rodman, Spectral analysis of matrix polynomials, II. Resolvent forms and spectral divisors, J. Lin. Alg. Applies. (To appear).Google Scholar
  18. 18.
    M.A. Golberg, A generalized Rayleigh quotient iteration for eigenvalue problems nonlinear in the parameter, Jour. Optim. Theory and Appl. 11. (1973), 146–158.CrossRefGoogle Scholar
  19. 19.
    B. Gramsch, Spektraleigenschaften analytischer Operatorfunktionen, Math. Z. 101 (1967), 165–181.CrossRefGoogle Scholar
  20. 20.
    R.D. Grigorieff, Diskrete Approximation von Eigenwertproblemen I. Qualitative Konvergenz, Numer. Math. 24 (1975), 355–374.CrossRefGoogle Scholar
  21. 21.
    R.D. Grigorieff, Diskrete Approximation von Eigenwertproblemen II. Konvergenzordnung, Numer. Math. 24 (1975), 415–433.CrossRefGoogle Scholar
  22. 22.
    K.P. Hadeler, Eigenwerte von Operatorpolynomen, Arch. Rat. Mech. Anal. 20 (1965), 72–80.CrossRefGoogle Scholar
  23. 23.
    P.F. Hennion, Algorithm 170. Reduction of a matrix containing polynomial elements, Comm. Assoc. Comp. Mach. 6 (1963), 165–166.Google Scholar
  24. 24.
    S. Hildebrandt, Über die Losung nichtlinearer Eigenwertaufgaben mit dem Galerkinverfahren, Math. Zeit. 101 (1967), 255–264.CrossRefGoogle Scholar
  25. 25.
    E. Hughes, On a quadratic eigenvalue problem, SIAM J. Math. Anal. 5, (1974), 319–326.CrossRefGoogle Scholar
  26. 26.
    G.A. Isaev, The linear factorization of polynomial operator pencils, Math. Notes 13 (1973), 333–338 (Transl. from Russian)CrossRefGoogle Scholar
  27. 27.
    H. Jeggle, Über die Approximation von linearen Gleichungenzweiter Art und Eigenwertproblemen in Banach-Räumen, Math. Z. 124 (1972), 319–342.CrossRefGoogle Scholar
  28. 28.
    L. Kaufman, The LZ-algorithm to solve the generalized eigenvalue problem, SIAM J. Numer. Anal. 11 (1974), 997–1024.CrossRefGoogle Scholar
  29. 29.
    M.V. Keldys, On the completeness of the eigenfunctions of some classes of nonself adjoint linear operators, Russian Math. Surveys 26 (1971), 15–44.CrossRefGoogle Scholar
  30. 30.
    M.G. Krein and H. Langer, On some mathematical principles of linear theory of damped vibrations of continua, Proc. Int’l. Symp. in Appl. of the Theory of Functions in Cont. Mechanics, Moscow, 1965, pp. 283-322.Google Scholar
  31. 31.
    V.N. Kublanovskaya, On an application of Newton’s method to the determination of eigenvalues of λ-matrices, SIAM J. Num. Anal. 7, (1970), 532–537.CrossRefGoogle Scholar
  32. 32.
    H. Kummer, Zur praktischen Behandlung nichtlinearer Eigenwertaufgaben abgeschlossener linearer Operatoren, Mitt. Math. Sem. Giessen, 1964.Google Scholar
  33. 33.
    P. Lancaster, A generalised Rayleigh-quotient iteration for lambda matrices, Arch. Rat. Mech. Anal. 6 (1961), 309–322.CrossRefGoogle Scholar
  34. 34.
    P. Lancaster, A Igorithns for lambda-matrices, Numer. Math. 6, (1964), 388–394.CrossRefGoogle Scholar
  35. 35.
    P. Lancaster, Lambda-matrices and Vibrating Systems, Pergamon Press, Oxford, 1966.Google Scholar
  36. 36.
    P. Lancaster, A fundamental theorem on lambda-matrices with applications, I: Ordinary Differential Equations with constant coefficients, J. Lin. Alg. and Appl. (To appear).Google Scholar
  37. 37.
    P. Lancaster, A fundamental theorem on lambda-matrices with applications, II: Difference equations with constant coefficients, J. Lin. Alg. and Appl. (To appear).Google Scholar
  38. 38.
    P. Lancaster and J.G. Rokne, Solutions of nonlinear operator equations, SIAM J. Math. Anal. (To appear).Google Scholar
  39. 39.
    C.E. Langenhop, A now reduction of λ-matrices, Lin. Alg. and Appl. 9 (1974), 185–198.CrossRefGoogle Scholar
  40. 40.
    M.I. Mavlyanova, Solution of a particular eigenvalue problem for a polynomial matrix, Seminars in Math., Steklov Inst., Vol. 18, (1972), 65–70. (Transln. by Consultants Bureau, New York).Google Scholar
  41. 41.
    M.I. Mavlyanova, On a method for constructing the matrix solution for a polynomial matrix, Ibid. pp. 71-79.Google Scholar
  42. 42.
    C.B. Moler and G.W. Stewart, An algorithm for the generalized matrix eigenvalue problem, SIAM J. Numer. Anal. 10 (1973), 241–256.CrossRefGoogle Scholar
  43. 43.
    D.E. Müller, A method for solving algebraic equations using an automatic computer, Math. Tab. 10 (1956), 208–215.Google Scholar
  44. 44.
    P.H. Müller, Eine neue Methode zur Behandlung Bichtlinearer Eigenwertaufgaben, Math. Z. 70 (1959), 381–406.CrossRefGoogle Scholar
  45. 45.
    P.H. Müller and H. Kummer, Zur Praktischen Bestimmung nichtlinear auftretender Eigenwerte Anwendung des Verfahrens auf eine Stabilitätsuntersuchung, Z.A.M.M. 40, (1960), 136–143.Google Scholar
  46. 46.
    M.R. Osborne, A new method for the solution of eigenvalue problems, Computer J. 7 (1964), 228–232.CrossRefGoogle Scholar
  47. 47.
    M.R. Osborne, and S. Michaelson, The numerical solution of eigenvalue problems in which the eigenvalue parameter appears nonlinearly, with an application to differential equations, Computer J. 7 (1964), 58–65.CrossRefGoogle Scholar
  48. 48.
    I.S. Pace and S. Barnett, Efficient algorithms for linear system calculations I, Smith form and common divisor of polynomial matrices, Int. J. Systems Sci. 5 (1974), 403–411.CrossRefGoogle Scholar
  49. 49.
    M.V. Pattabhiraman, The generalized Rayleigh quotient, Canad. Math. Bull. 17 (1974), 251–256.CrossRefGoogle Scholar
  50. 50.
    G. Peters and J.H. Wilkinson, Ax =λBx and the generalized eigenproblem, SIAM J. Numer. Anal. 7, (1970), 479–492.CrossRefGoogle Scholar
  51. 51.
    W.R. Richert, Zur Behandlung von Eigenwertaufgaben mit nichtlinear auftretendem Parameter, Numer. Math. 22 (1974), 275–287.CrossRefGoogle Scholar
  52. 52.
    W.R. Richert, Zur Fehlerab Schätzung für Eigenwertaufgaben vom Typ2 I-λA-B)x = 0. Numer. Math. 22 (1974), 233–239.CrossRefGoogle Scholar
  53. 53.
    A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal. 10, (1973), 674–689.CrossRefGoogle Scholar
  54. 54.
    H. Rutishauser, Solution of the eigenvalue problem, with the LR transformation, N.B.S. Appl. Math. Series 49, Washington, D.C., 1958.Google Scholar
  55. 55.
    F. Stummel, Diskrete Konvergenz linearer Operatoren II, Math. Z. 120, (1971), 231–264.CrossRefGoogle Scholar
  56. 56.
    J. Terray and P. Lancaster, A boundary value problem from the study of heat transfer, I.S.N.M. 27 (1975), 303–308.Google Scholar
  57. 57.
    J. Terray and P. Lancaster, On the numerical calculation of eigenvalues and eigenvectors of operator polynomials, J. Math. Anal. Appl. (To appear).Google Scholar
  58. 58.
    J.F. Traub, A class of globally convergent iteration functions for the solution of polynomial equations, Math. Comp. 20 (1966), 113–138.CrossRefGoogle Scholar
  59. 59.
    F.G. Tricomi, Integral Equations, Interscience, New York, 1957.Google Scholar
  60. 60.
    J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford, 1965.Google Scholar
  61. 61.
    A.C. Zaanen, Linear Analysis, North-Holland, Amsterdam, 1956.Google Scholar

Copyright information

© Springer Basel AG 1977

Authors and Affiliations

  • P. Lancaster
    • 1
  1. 1.Department of Mathematics and StatisticsThe University of CalgaryCanada

Personalised recommendations