Skip to main content

Stabilität bei der Methode der Finiten Elemente for Quasilineare Elliptische Randwertprobleme

  • Chapter
Numerische Behandlung von Differentialgleichungen

Abstract

We consider mixed boundary value problems for elliptic differential equations of second order in the plane that are the Euler-equations of a variational problem. The boundary conditions include Dirichlet’s problem and the third boundary value problem. As trial functions for the finite element method we use piecewise polynomials of arbitrary degree, which can be either Lagrange — or Hermite — interpolation polynomials. Generalizing known results stability theorems are given including the case of isoparametric elements. A minimal and a capillary surface are computed using quadratic isoparametric elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Babuska, I.: The finite element method with Lagrangian multipliers. Num. Math. 20, 179–192 (1973)

    Article  Google Scholar 

  2. Berger, A. E.: Two Types of Piecewise Quadratic Spaces and Their Order of Accuracy for Poisson’s Equation, in “The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations”, ed. A. K. Aziz. Academic Press, New York and London (1972)

    Google Scholar 

  3. Berger, A. E.: L2 Error Estimates for Finite Elements with Interpolated Boundary Conditions. Num. Math. 21, 345–349 (1973)

    Article  Google Scholar 

  4. Bramble, J. H. and Schatz, A. H. Rayleigh–Ritz–Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions. Comm. Pure Appl. Math. 23, 653–675 (1970)

    Article  Google Scholar 

  5. Bramble, J. H. and Zlamal, M.: Triangular elements in the finite element method. Math. Comp. 24, 809–821 (1970)

    Article  Google Scholar 

  6. Ciarlet, P. G. and Raviart, P. A.: General Lagrange and Hermite interpolation in Utn with applications to the finite element method. Arch. Rat. Mech. Anal. 46, 177–199 (1972)

    Article  Google Scholar 

  7. Ciarlet, P. G. and Raviart, P. A.: Interpolation theory over curved elements, with applications to finite element methods. Comp. Meth. Appl. Mech. Engin. 1, 217–249 (1972)

    Article  Google Scholar 

  8. Ciarlet, P. G. and Raviart, P. A.: The Combined Effect of Curved Boundaries and Numerical Integration in Isoparametric Finite Element Methods, in “The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations”, ed. A. K. Aziz. Academic Press, New York and London (1972)

    Google Scholar 

  9. Cowper, G. R.: Gaussian quadrature formulas for triangles. Int. J. Num. Meth. Engin. 7, 405–408 (1973)

    Article  Google Scholar 

  10. Eisenstat, S. C. and Schultz, M. H.: Computational Aspects of the Finite Element Method. In demselben Buch wie 121 (1972)

    Google Scholar 

  11. Fried, I.: Condition of finite element matrices generated from nonuniform meshes. AIAA J. 10, 219–221 (1971)

    Article  Google Scholar 

  12. Gordon, W. J. and Hall, C. A.: Geometric Aspects of the Finite Element Method. In demselben Buch wie 121 (1972)

    Google Scholar 

  13. Haber, S.: Numerical Evaluation of multiple integrals. SIAM Rev. 12, 481–526 (1970)

    Article  Google Scholar 

  14. Hinata, M. et. al.: Numerical Solution of Plateau’s Problem by a Finite Element Method. Math. Comp. 28, 45–60 (1974)

    Google Scholar 

  15. Koukal, S.: Piecewise polynomial interpolations and their applications to partial differential equations. Sbornik VAAZ, Brno, 29–38 (1970) (In Tschechisch)

    Google Scholar 

  16. Mittelmann, H. D.: Die Approximation der Lösungen gemischter Randwertprobleme quasilinearer elliptischer Randwertprobleme. Erscheint demnächst in Computing (1974)

    Google Scholar 

  17. Mittelmann, H. D.: Finite-Element Verfahren bei quasilinearen elliptischen Randwertproblemen. Lecture Notes 395, S. 199–214, Springer-Verlag, Berlin (1974)

    Google Scholar 

  18. Necas, J.: Les Methodes directes en theorie des equations elliptiques. Academia, Prag (1967)

    Google Scholar 

  19. Nicolaides, R. A.: On a class of finite elements generated by Lagrange interpolation. SIAM J. Num. Anal. 9, 435–445 (1972)

    Article  Google Scholar 

  20. Nicolaides, R. A.: On a class of finite elements generated by Lagrange interpolation. II. SIAM J. Num. Anal. 10, 182–189 (1973)

    Article  Google Scholar 

  21. Nitsche, J.: Ober ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1970)

    Google Scholar 

  22. Nitsche, J.: Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme. Arch. Rat. Mech. Anal. 36, 348–355 (1970)

    Article  Google Scholar 

  23. Nitsche, J.: On Dirichlet Problems Using Subspaces with Nearly Zero Boundary Conditions. In demselben Buch wie 121 (1972)

    Google Scholar 

  24. Ortega, J. M. and Rheinboldt, W. C.: Iterative Solution of nonlinear equations in several variables. Academic Press, New York and London (1970)

    Google Scholar 

  25. Reid, J. K.: On the Construction and Convergence of a Finite-Element Solution of Laplace’s Equation. J. Inst. Math. Appl. 9, 1–13 (1972)

    Article  Google Scholar 

  26. Silvester, P.: Symmetric quadrature formulae for simplexes. Math. Comp. 24, 95–100 (1970)

    Article  Google Scholar 

  27. Strang, G. and Fix, G. J.: An Analysis of the Finite Element Method. Prentice Hall, Inc., Englewood Cliffs, N. J. (1973)

    Google Scholar 

  28. Stroud, A. H.: Approximate Calculation of Multiple Integrals. Prentice Hall, Inc., Englewood Cliffs, N. J. (1971)

    Google Scholar 

  29. Thomee, V.: Polygonal domain approximation in Dirichlet’s problem. J. Inst. Math. Appl. 11, 33–44 (1973)

    Article  Google Scholar 

  30. Uraltseva, N. N.: Nonlinear Boundary Value Problems for Equations of Minimal-Surface Type. Proc. Steklov Inst. Math. 116, 227–237 (1971)

    Google Scholar 

  31. Zenisek, A.: Interpolation polynomials on the triangle. Num. Math. 15, 283–296 (1970)

    Article  Google Scholar 

  32. Zlamal, M.: The finite element method in domains with curved boundaries. Int. J. Num. Meth. Engin. 5, 367–373 (1973)

    Article  Google Scholar 

  33. Zlamal, M.: Curved elements in the finite element method. SIAM J. Num. Anal. 10, 229–240 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Basel AG

About this chapter

Cite this chapter

Mittelmann, H.D. (1975). Stabilität bei der Methode der Finiten Elemente for Quasilineare Elliptische Randwertprobleme. In: Numerische Behandlung von Differentialgleichungen. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 27. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5532-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5532-7_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5533-4

  • Online ISBN: 978-3-0348-5532-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics