Skip to main content

Protein Metabolism During Two Hour Ergometer Exercise’

  • Chapter

Abstract

The bulk of research on exercise metabolism has been concentrated on activity durations of less than one hour. These studies strongly indicate that, for exercise of short duration, the energy requirement can easily be met by glycogen and fatty acid breakdown. Recent work has indicated a small, but important, role of amino-acid metabolism during this type of exercise [6, 7, 12, 22, 23, 29], and suggests that this role may become increasingly important as work duration increases [17, 23, 27].

1 Supported by the Deutsche Forschungsgemeinschaft

2 Recipient Research Fellowship, Alexander von Humboldt Foundation, Bad Godesberg.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, J. B. and Bird, J. W. C.: Elimination of Nitrogen From the Body; In: Munro, H. N. and Allison, J. B., Mammalian Protein Metabolism, Vol. 1, p. 483–512 ( Academic Press, New York/London, 1964 ).

    Google Scholar 

  2. Bowman, R. H.: Effects of Diabetes, Fatty Acids, and Ketone Bodies on Tricarboxylic Acid Cycle Metabolism in the Perfused Rat Heart. J. Biol. Chem. 241, 3041–3048 (1966).

    Google Scholar 

  3. Delforge, E., Delforge, B. and Poortmans, J. R.: Influence of Increasing Activity on the Protein Level in Serum, Urine and Sweat; in Poortmans, J., Biochemistry of Exercise, Medicine and Sport, Vol. 3, p. 353–355 (Karger, Basel/New York, 1969).

    Google Scholar 

  4. Denckla, W. and Dewey, H.: The determination of Tryptophan in Plasma, Liver, and Urine. J. Labor. Clin. Med. 69, 160–169 (1967).

    Google Scholar 

  5. Documenta Geigy-Wissenschaftliche Tabellen, 7. Auflage, p. 498–500, 527–529 ( J. R. Geigy, Basle, 1969 ).

    Google Scholar 

  6. Felig, P. and Wahren, J.: Influence of Endogenous Insulin Secretion on Splanchnic Glucose and Amino Acid Metabolism in Man. J. Clin. Invest. 50, 1702–1711 (1971).

    Article  Google Scholar 

  7. Felig, P. and Wahren, J.: Amino Acid Metabolism in Exercising Man. J. Clin. Invest. 50, 2703–2714 (1971).

    Article  Google Scholar 

  8. Fiedler, H. P.: Der Schweiss; p. 224–251 ( Editio Cantor KG, Aulendorf i. Württ., 1968 ).

    Google Scholar 

  9. Gontzea, J. and Schutzescu, P.: Stickstoffverluste mit dem Schweiss bei Muskelarbeit. Int. Z. angew. Physiol. einschl. Arbeitsphysiol. 20, 90–110 (1963).

    Google Scholar 

  10. Haralambie, G.: Valeurs biochimiques sériques et syndrome de suprasollicitation chez le sportif. Acta biol. med. german. 17, 34–43 (1966).

    Google Scholar 

  11. Haralambie, G., Fleischmann, W. and Keul, J.: Tyrosin und Tryptophan Serumspiegel bei Sportlern. Sportarzt u. Sportmed. 21, 132–133 (1970).

    Google Scholar 

  12. Haralambie, G. and Keul, J.: Beziehungen zwischen Proteinstoffwechsel und körperlichen Belastungen. Med. Welt 22, 1977–1980 (1971).

    Google Scholar 

  13. Horvath, G.: Blood-Serum level of Uric acid in top sportsmen. Acta Rheum. Scand. 13, 308–312 (1967).

    Google Scholar 

  14. Ishikawa, E., Aikwa, T. and Matsutaka, H.: The Roles of Alanine as a Major Precursor among Amino Acids for Hepatic Gluconeogenesis and as a Major End Product of the Degradation of Amino Acids in Rat Tissues. J. Biochem. 71, 1097–1099 (1972).

    Google Scholar 

  15. Kachadorian, W. A.: The effects of activity on renal function; in Fitness and Exercise, Proc. of CIC Symposium, Nov. 1–2, 1971, p. 97–116 ( The Athletic Institute, Chicago, 1972 ).

    Google Scholar 

  16. Keul, J., Doll, E., Steim, H., Singer, U. and Reindell, H.: Über den Stoffwechsel des Herzens bei Hochleistungssportlern. Klin. Wochen 44, 881–887 (1966).

    Article  Google Scholar 

  17. Keul, J., Doll, E. and Keppler, D.: Energy Metabolism of Human Muscle; p. 174–202 (S. Karger, Basel, 1972).

    Google Scholar 

  18. Krebs, H. A.: The Metabolic Fate of Amino Acids; in Munro, H. N. and Allison, J.B., Mammalian Protein Metabolism, Vol. 1, p. 125–177 ( Academic Press, New York/London, 1964 ).

    Google Scholar 

  19. Laborit, H.: Alimentation, metabolisme cellulaire et fatigue. Bul. Soc. Sci. hyg. aliment. 51, 36–46 (1963).

    Google Scholar 

  20. Lowenstein, J. M.: Ammonia Production in Muscle and other Tissues: The Purine Nucleotide Cycle. Physiol. Rev. 52, 382–414 (1972).

    Google Scholar 

  21. Mitchell, H. H. and Kruger, J. H.: The effect of muscular work upon the endogenous catabolism of the tissues. J. Biol. Chem. 76, 55–74 (1928).

    Google Scholar 

  22. Moil, P. A. and Johnson, R. E.: Disclosure by dietary modification of an exercise-induced protein catabolism in man. J. Appl. Physiol. 31, 185–190 (1971).

    Google Scholar 

  23. Molé, P. A., Baldwin, K. M., Terjung, R. L. and Holloszy, J. O.: Enzymatic pathways of pyruvate metabolism in skeletal muscle: adaptations to exercise. Amer. J. Physiol. 224, 50–54 (1973).

    Google Scholar 

  24. Peters, J. P. and Van Slyke, D. D.: Quantitative Clinical Chemistry, Vol. 1, p. 266–281, 335–467 ( Williams and Wilkins Co, Baltimore, 1932 ).

    Google Scholar 

  25. Porzolt, F., Wagner, D. and Bichler, K. H.: Das Serumkreatinin und die Nierenfunktion unter körperlicher Belastung. Sportarzt u. Sportmed. 24, 27–30 (1973).

    Google Scholar 

  26. Rapp, R. D.: Determination of Serum Amino Acids. Clin. Chem. 9, 27–30 (1963).

    Google Scholar 

  27. Rougier, G., Babin, R. and Babin, J. P.: Variations du Metabolisme urique au cours d’exercises physiques intenses de brève ou longue durée. J. Physiol. (Paris), 65, suppl. 3, 491A (1972).

    Google Scholar 

  28. Thefeld, W., Hoffmeister, H., Busch, E. W., Koller, P. U. and Vollmar, J.: Normalwerte der Serumharnsäure in Abhängigkeit von Alter und Geschlecht mit einem neuen enzymatischen Harnsäurefarbtest. Dt. Med. Wschr. 98, 380–384 (1973).

    Article  Google Scholar 

  29. Wahren, J., Felig, P., Hender, R. and Ahlborg, G.: Glucose and amino acid metabolism during recovery after exercise. J. Appl. Physiol. 34, 838–845 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Howald Jacques R. Poortmans (President of the Research Group on Biochemistry of Exercise)

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Basel AG

About this chapter

Cite this chapter

Cerny, F.J. (1975). Protein Metabolism During Two Hour Ergometer Exercise’. In: Howald, H., Poortmans, J.R. (eds) Metabolic Adaptation to Prolonged Physical Exercise. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5523-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5523-5_26

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-0725-7

  • Online ISBN: 978-3-0348-5523-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics