Skip to main content

Abstract

It is probably fair to say that many, if not most, biochemists had lost interest in the fundamental physiological processes by the middle 1960’s, distracted by the extraordinary advances in molecular genetics and by the resurgence of interest in chemical anatomy. Many believed that our knowledge of such things as the metabolism of muscle was stale stuff-to be waded through in the classroom and then forgotten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, S.: The Simultaneous Determination of Muscle Cell pH using a Weak Acid and a Weak Base, J. Clin. Invest. 51, 256–265 (1972).

    Article  Google Scholar 

  2. Bachelard, H. S., and Goldfarb, P. S.G.: Adenine Nucleotides and Magnesium Ions in Relation to Control of Mammalian Cerebral Cortex Hexokinase, Biochem. J. 112, 579–586 (1969).

    Google Scholar 

  3. Bergström, J., Harris, R. C., Hultman, E., and Nordesjö, L. O.: Energy Rich Phosphagens in Dynamic and Static Work, Adv. Exptl. Biol. Med. 11, 341–355 (1971).

    Article  Google Scholar 

  4. Bergström, J., and Hultman, E.: A Study of the Glycogen Metabolism During Exercise in Man, Scand. J. Clin. Lab. Invest. 19, 218–228 (1967).

    Article  Google Scholar 

  5. Black, W. J., van Tol, A., Fernando, J., and Horecker, B. L.: Isolation of a Highly Active Fructosediphosphatase from Rabbit Muscle. Its Subunit Structure and Activation by Monovalent Cations, Arch. Biochem. Biophys. 151, 576–590 (1972).

    Article  Google Scholar 

  6. Bunn, H. F., Ransil, B. J., and Chao, A.: The Interaction between Organic Phosphates, Magnesium Ion, and Hemoglobin, J. Biol. Chem. 246, 5273–5279 (1971).

    Google Scholar 

  7. Cain, D. F., and Davies, R. E.: Breakdown of Adenosine Triphosphate During a Single Contraction of Working Muscle, Biochem. Biophys. Res. Comm. 8, 361–366 (1962).

    Article  Google Scholar 

  8. Carlson, L. A., Ekelund, L.-G., and Fröberg, S. O.: Concentration of Triglycerides, Phospholipids, and Glycogen in Skeletal Muscle and of Free Fatty Acids and ß-Hydroxybutyric Acid in Blood in Man in Response to Exercise, Europ. J. Clin. Invest. 1, 248–254 (1971).

    Google Scholar 

  9. Cooke, R., and Wien, R.: The State of Water in Muscle Tissue as Determined by Proton Nuclear Magnetic Resonance, Biophys. J. 11, 1002–1017 (1971).

    Article  Google Scholar 

  10. Costill, D. L., Bowers, R., Branam, G., and Sparks, K.: Muscle Glycogen Utilization During Prolonged Exercise on Successive Days, J. Appl. Physiol. 31, 834–838 (1971).

    Google Scholar 

  11. Crabtree, B., and Newsholme, E. A.: The Activities of Phosphorylase, Hexokinase, Phosphofructokinase, Lactate Dehydrogenase, and the Glycerol 3-Phosphate Dehydrogenases in Muscles from Vertebrates and Invertebrates, Biochem. J. 126, 49–58 (1972).

    Google Scholar 

  12. Davies, C. T. M.: Human Power Output in Exercise of Short Duration in Relation to Body Size and Composition, Ergonomics 14, 245–256 (1971).

    Article  Google Scholar 

  13. Prampero, P. E.: The Alactic Oxygen Debt: Its Power, Capacity, and Efficiency, Adv. Exptl. Biol. Med. 11, 371–382 (1971).

    Article  Google Scholar 

  14. Prampero, P. E., Peeters, L., and Margaria, R.: Alactic 02 Debt and Lactic Acid Production After Exhausting Exercise in Man, J. Appl. Physiol. 34, 628–632 (1973).

    Google Scholar 

  15. Felig, P., and Wahren, J.: Amino Acid Metabolism in Exercising Man, J. Clin. Invest. 50, 2703–2714 (1971).

    Article  Google Scholar 

  16. Fischer, E. H., Heilmeyer, JR., L. M. G., and Haschke, R. H.: Phosphorylase and the Control of Glycogen Degradation, Curr. Topics Cell Regul. 4, 211–251 (1971).

    Google Scholar 

  17. Fletcher, J. G., and Lewis, H. E.: Photographic Methods for Estimating External Lifting Work in Man, Ergonomics 2, 114–115 (1959).

    Google Scholar 

  18. Fröberg, S. O., and Mossfeldt, F.: Effect of Prolonged Strenuous Exercise on the Concentration of Triglycerides, Phospholipids, and Glycogen in Man, Acta Physiol. Scand. 82, 167–171 (1971).

    Google Scholar 

  19. Fu, J. Y., and Kemp, R. G.: Activation of Muscle Fructose 1,6-Diphosphatase by Creatine Phosphate and Citrate, J. Biol. Chem. 248, 1124–1125 (1973).

    Google Scholar 

  20. Gilbert, C., Kretzschmar, K. M., Wilkie, D. R., and Woledge, R. C.: Chemical Change and Energy Output During Muscular Contraction, J. Physiol. 218, 163–193 (1971).

    Google Scholar 

  21. Hagenfeldt, L., and Wahren, J.: Human Forearm Muscle Metabolism During Exercise VII. FFA Uptake and Oxidation at Different Work Intensities, Scand. J. Clin. Lab. Invest. 30, 429–436 (1972).

    Article  Google Scholar 

  22. Hansford, R. G., and Chappell, J. B.: The Effect of Ca2+ on the Oxidation of Glycerol Phosphate by Blowfly Flight-Muscle Mitochondria, Biochem. Biophys. Res. Comm. 27, 686–692 (1967).

    Article  Google Scholar 

  23. Havel, R. J., Carlson, L. A., Ekelund, L.-G., and Holmgren, A.: Turnover Rates and Oxidation of Different Free Fatty Acids in Man During Exercise, J. Appl. Physiol. 19, 613–618 (1964).

    Google Scholar 

  24. Havel, R. J., Pernow, B., and Jones, N. L.: Uptake and Release of Free Fatty Acids and Other Metabolites in the Legs of Exercising Men, J. Appl. Physiol. 23, 90–99 (1967).

    Google Scholar 

  25. Hermansen, L., and Stensvold, I.: Production and Removal of Lactate During Exercise in Man, Acta Physiol. Scand. 86, 191–201 (1972).

    Google Scholar 

  26. Hohorst, H. J., Reim, M., and Bartels, H.: Studies on the Creatine Kinase Equilibrium in Muscle and the Significance of ATP and ADP Levels, Biochem. Biophys. Res. Comm. 7, 142–146 (1962).

    Article  Google Scholar 

  27. Hultman, E.: Muscle Glycogen in Man Determined in Needle Biopsy Specimens. Method and Normal Values, Scand. J. Clin. Lab. Invest. 19, 209–217 (1967).

    Article  Google Scholar 

  28. Hultman, E., Bergström, J., and Anderson, N. M.: Breakdown and Resynthesis of Phosphorylcreatine and Adenosine Triphosphate in Connection with Muscular Work in Man, Scand. J. Clin. Lab. Invest. 19, 56–66 (1967).

    Article  Google Scholar 

  29. Jones, N. L., Robertson, D. G., Kane, J. W., and Hart, R. A.: Effect of Hypoxia on Free Fatty Acid Metabolism During Exercise, J. App. Physiol. 33, 733–738 (1972).

    Google Scholar 

  30. Jorfeldt, L.: Metabolism of L(+)-lactate in Human Skeletal Muscle During Exercise, Acta Physiol. Scand., Suppl. 338 (1970).

    Google Scholar 

  31. Kaijser, L.: Limiting Factors for Aerobic Muscle Performance, Acta Physiol. Scand., Suppl. 346 (1970).

    Google Scholar 

  32. Kamm, E., and Pandolf, K. B.: Maximal Aerobic Power During Laddermill Climbing, Uphill Running, and Cycling, J. Appl. Physiol. 32, 467–473 (1972).

    Google Scholar 

  33. Karlsson, J.: Pyruvate and Lactate Ratios in Muscle Tissue and Blood During Exercise in Man, Acta Physiol. Scand. 81, 455–458 (1971).

    Google Scholar 

  34. Karlsson, J.: Lactate and Phosphagen Concentrations in Working Muscles of Man, Acta Physiol. Scand., Suppl. 358 (1971).

    Google Scholar 

  35. Kemp, R. G.: Inhibition of Muscle Pyruvate Kinase by Creatine Phosphate, J. Biol. Chem. 248, 3963–3967 (1973).

    Google Scholar 

  36. Keul, J., and Doll, E.: Intermittent Exercise: Metabolites, pO2, and Acid-Base equilibrium in the Blood, J. Appl. Physiol. 34, 220–225 (1973).

    Google Scholar 

  37. Keul, J., Doll, E., and Keppler, D.: Energy Metabolism of Human Muscle (S. Karger, Basel, 1972 ).

    Google Scholar 

  38. Klausen, K., Knuttgen, H. G., and Forster, H. V.: Effect of Pre-Existing High Blood Lactate Concentration on Maximal Exercise Performance, Scand. J. Clin. Lab. Invest. 30, 415–419 (1972).

    Article  Google Scholar 

  39. Kleine, T. O.: Enzymmuster und pathologisch veränderte Muskeln des Menschen, Zeit. Klin. Chem. 5, 244–247 (1967).

    Google Scholar 

  40. Klingenberg, M.: Localization of the Glycerol 3-Phosphate Dehydrogenase in the Outer Phase of the Mitochondrial Inner Membrane, Eur. J. Biochem. 13, 247–252 (1970).

    Article  Google Scholar 

  41. Knuttgen, H., and Saltin, B.: Muscle Metabolites and Oxygen Uptake in Short-Term Submaximal Exercise in Man, J. Appl. Physiol. 32, 690–694 (1972).

    Google Scholar 

  42. Knurrgen, H., and Saltin, B.: Oxygen Uptake, Muscle High-Energy Phosphates, and Lactate in Exercise under Acute Hypoxic Conditions in Man, Acta Physiol. Scand. 87, 368–376 (1973).

    Google Scholar 

  43. Krzanowski, J., and Matschinsky, F. M.: Regulation of Phosphofructokinase by Phosphocreatine and Phosphorylated Glycolytic Intermediates, Biochem. Biophys. Res. Comm. 34, 816–823 (1969).

    Article  Google Scholar 

  44. Kuby, S. A., and Noltmann, E. A., ATP-Creatine Transphosphorylase; in Boyer, P. D., Lardy, H., and Myrbäck, K., The Enzymes, 2nd ed., v. 6, p. 515–603 ( Academic Press, New York/London 1962 ).

    Google Scholar 

  45. Margaria, R., Camporesr, E., Aghemo, P., and Sassi, G.: The Effect of 02 Breathing on Maximal Aerobic Power, Pflügers Arch. 336, 225–235 (1972).

    Article  Google Scholar 

  46. Margaria, R., Cerretelli, P., and Mangili, F.: Balance and Kinetics of Anaerobic Energy Release During Strenuous Exercise in Man, J. Appl. Physiol. 19, 623–628 (1964).

    Google Scholar 

  47. Marston, S. B., and Tregear, R. T.: Evidence for a Complex Between Myosin and ADP in Relaxed Muscle Fibers, Nature New Biol. 235, 23–24 (1972).

    Article  Google Scholar 

  48. Mc Quate, J. T., and Utter, M. F.: Equilibrium and Kinetic Studies of the Pyruvic Kinase Reaction, J. Biol. Chem. 234, 2151–2157 (1959).

    Google Scholar 

  49. Newsholme, E. A.: The Regulation of Phosphofructokinase in Muscle, Cardiology 56, 22–34 (1971).

    Article  Google Scholar 

  50. Oguchi, M., Gerth, E., Fitzgerald, B., and Park, J. H.: Regulation of Glyceraldehyde 3-Phosphate Dehydrogenase by Phosphocreatine and Adenosine Triphosphate, J. Biol. Chem. 248, 5571–5576 (1973).

    Google Scholar 

  51. Passoneau, J. V., and Lowry, O. H.: Phosphofructokinase and the Pasteur Effect, Biochem. Biophys. Res. Comm. 7, 10–15 (1962).

    Article  Google Scholar 

  52. Paul, P.: FFA Metabolism of Normal Dogs During Steady-State Exercise at Different Work Loads, J. Appl. Physiol. 28, 127–132 (1970).

    Google Scholar 

  53. Pernow, B., and Saltin, B.: Muscle Metabolism During Exercise, Adv. Exptl. Biol. Med. 11 (1971).

    Google Scholar 

  54. Pernow, B., and Saltin, B.: Availability of Substrates and Capacity for Prolonged Heavy Exercise in Man, J. Appl. Physiol. 31, 416–422 (1971).

    Google Scholar 

  55. Perry, S. V.: The Bound Nucleotide of the Isolated Myofibril, Biochem. J. 51, 495–507 (1952).

    Google Scholar 

  56. Peter, J. B., Sawaki, S., Barnard, R. J., Edgerton, V. R., and Gillespie, C. A.: Lactate Dehydrogenase Isozymes: Distribution in Fast-Twitch Red, Fast-Twitch White, and Slow-Twitch Intermediate Fibers of Guinea Pig Skeletal Muscle, Arch. Biochem. Biophys. 144, 304–307 (1971).

    Article  Google Scholar 

  57. Pette, D.: Metabolic Differentiation of Distinct Muscle Types at the Level of Enzymatic Organization, Adv. Exptl. Biol. Med. 11, 33–49 (1971).

    Article  Google Scholar 

  58. Pirnay, E., Lamy, M., Dujardin, J., Eroanne, R., and Petit, J. M.: Analysis of Femoral Venous Blood During Maximal Muscle Exercise, J. Appl. Physiol. 33, 289 (1972).

    Google Scholar 

  59. Poortmans, J. R.: The Biochemistry of Exercise (S. Karger, Basel, 1968 ).

    Google Scholar 

  60. Pruett, E. D. R.: FFA Mobilization During and After Prolonged Severe Muscular Work in Men, J. Appl. Physiol. 29, 809–815 (1970).

    Google Scholar 

  61. Rao, D. R., and Oesper, P.: Purification and Properties of Muscle Phosphoglycerate Kinase, Biochem. J. 81, 405–411 (1961).

    Google Scholar 

  62. Reitman, J., Baldwin, K. M., and Holloszy, J. O.: Intramuscular Triglyceride Utilization by Red, White, and Intermediate Skeletal Muscle and Heart During Exhausting Exercise, Proc. Soc. Exptl. Biol. Med. 142, 628–631 (1973).

    Article  Google Scholar 

  63. Rose, I. A.: The State of Magnesium in Cells as Estimated from the Adenylate Kinase Equilibrium, Proc. Natl. Acad. Sci. U.S. 61, 1079–4086 (1968).

    Article  Google Scholar 

  64. Safer, B., Smith, C. M., and Williamson, J. R.: Control of the Transport of Reducing Equivalents Across the Mitochondrial Membrane in Perfused Rat Heart, J. Mol. Cardiology 2, 111–124 (1971).

    Article  Google Scholar 

  65. Seraydarian, K., Mommaerts, W. H. F. M., and Wallner, A.: The Amount and Compartmentalization of Adenosine Diphosphate in Muscle, Biochim. Biophys. Acta 65, 443–460 (1962).

    Article  Google Scholar 

  66. Shen, L. C., Fall, L., Walton, G. M., and Atkinson, D. E.: Interaction Between Energy Charge and Metabolite Modulation in the Regulation of Enzymes of Amphibolic Sequences. Phosphofructokinase and Pyruvate Dehydrogenase, Biochemistry 7, 4041–4045 (1968).

    Article  Google Scholar 

  67. Sols, A., and Marcos, R.: Concentrations of Metabolites and Binding Sites. Implications in Metabolic Regulation, Curr. Topics Cell Regul. 2, 227–273 (1970).

    Google Scholar 

  68. Staudte, H. W., and Pette, D.: Correlations Between Enzymes of Energy-Supplying Metabolism as a Basic Pattern of Organization in Muscle, Comp. Biochem. Physiol. 41B, 533–540 (1972).

    Google Scholar 

  69. Sunzel, H.: Effects of Fasting and of Intravenous Glucose Administration on Liver Glycogen in Man, Acta Chir. Scand. 125, 107–117 (1963).

    Google Scholar 

  70. Trivedi, B., and Danforth, W. H.: Effect of pH on the Kinetics of Frog Muscle Phosphofructokinase, J. Biol. Chem. 241, 4110–4114 (1966).

    Google Scholar 

  71. Ui, M.: A Role of Phosphofructokinase in pH-Dependent Regulation of Glycolysis, Biochim. Biophys. Acta 124, 310–322 (1966).

    Article  Google Scholar 

  72. Uyeda, K., and Racker, E.: Regulatory Mechanisms in Carbohydrate Metabolism. VII. Hexokinase and Phosphofructokinase, J. Biol. Chem. 4682–4688 (1965).

    Google Scholar 

  73. Veloso, D., Guynn, R. W., Oskarsson, M., and Veech, R. L.: The Concentrations of Free and Bound Magnesium in Rat Tissues, J. Biol. Chem. 248, 4811–4819 (1973).

    Google Scholar 

  74. Waddell, W. J., and Bates, R. G.: Intracellular pH, Physiol. Review 49, 285–329 (1969).

    Google Scholar 

  75. Wahren, J., Felig, P., Ahlborg, G., and Jorfeldt, L.: Glucose Metabolism During Leg Exercise in Man, J. Clin. Invest. 50, 2715–2725 (1971).

    Article  Google Scholar 

  76. Walser, M.: Magnesium Metabolism, Ergebnisse der Physiol. 59, 185–296 (1967).

    Article  Google Scholar 

  77. Wilkie, D. R.: Man as a Source of Mechanical Power, Ergonomics 3, 1–8 (1960).

    Article  Google Scholar 

  78. Williamson, J. R., Smith, C. M., Lanoue, K. F., and Bryla, J.: Feedback Control of the Citric Acid Cycle, in Mehlman, M. A., and Hanson, R. W.: Energy Metabolism and the Regulation of Metabolic Processes in Mitochondria, p. 185–210 ( Academic Press, New York/London 1972 ).

    Google Scholar 

  79. Winkler, H. H., Bygrave, F. L., and Lehninger, A. L.: Characterization of the Atractyloside-Sensitive Adenine Nucleotide Transport System in Rat Liver Mitochondria, J. Biol. Chem. 243, 20–28 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Howald Jacques R. Poortmans (President of the Research Group on Biochemistry of Exercise)

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Basel AG

About this chapter

Cite this chapter

Mc Gilvery, R.W. (1975). The Use of Fuels for Muscular Work. In: Howald, H., Poortmans, J.R. (eds) Metabolic Adaptation to Prolonged Physical Exercise. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5523-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5523-5_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-0725-7

  • Online ISBN: 978-3-0348-5523-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics