Skip to main content

Iterative Eigenvalue Algorithms for Large Symmetric Matrices

  • Chapter
Numerische Behandlung von Eigenwertaufgaben

Summary

We compare several iterative eigenvalue algorithms applicable to large sparse symmetric matrices, of so high an order that the matrix A cannot be stored in the memory of the computer, while it is easy to compute y = Ax for a given vector x.

Our main interest is focused to the Lanczos algorithm, and algorithms that apply an optimization strategy to the Rayleigh quotient, mainly steepest descent, multiple step steepest descent and conjugate gradients. We study the rates of convergence, nd find that the theoretical bounds for all the algorithms is determined by the separation of the extreme eigenvalue from the rest of the spectrum of the matrix.

We discuss computer implementation and report several numerical tests. These show a marked superiority for the Lanczos algorithm compared to the others. Of the other algorithms, the c-g algorithm also works well in wellconditioned cases, and it can be realized by a very simple program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agoshkov, V.I., and Ju. A. Kuznetsov: Metod Lanczosa v problems sobstvennyc znachenii (Lanczos method for the eigenvalue problem) (Russian) in G. I. Marchuk (ed), Comp. Meth Linear Algebra, Novosibirsk (1972).

    Google Scholar 

  2. Alsen Britt Marie: Multiple step gradient iterative methods for computing eigen-values of large symmetric matrices. Techn. Rep. UMINF-15. 71,Univ. of Ume..

    Google Scholar 

  3. Andersson, I.: Experiments with the conjugate gradient algorithm for the determination of eigenvalues of symmetric matrices. Tech. Rep. UMINF-4. 71, Univ. of Ume..

    Google Scholar 

  4. Bradbury, W. W., and R. Fletcher: New iterative methods for solution of the eigen-problem. Num. Math. 9 (1966), 259–267.

    Article  Google Scholar 

  5. Buffoni, G.: Evaluation of eigensolutions of discrete space diffusion equation. Calcolo 4 (1967), 169–177.

    Article  Google Scholar 

  6. Byström, P.: SOR iterations for the computation of eigenvalues of a symmetric matrix. Tech. Rep. UMINF-29.72.

    Google Scholar 

  7. Cohen, A. I.: Rate of convergence of several conjugate gradient algorithms. SIAM J. Num. An. 9 (1972), 248–259.

    Article  Google Scholar 

  8. Curtis, A. R., and J. K. Reid: The solution of large sparse unsymmetric systems of linear equations. Proc. IFIP congr. (1971), Ljubljana TA-1, 1–5.

    Google Scholar 

  9. Daniel, J. W.: The Approximate minimization of functionals. Prentice Hall, Englewood Cliffs (1971).

    Google Scholar 

  10. Davis, C., and W. M. Kahan: The rotation of eigenvectors by a perturbation III. SIAM J. Num. An. 7 (1970), 1–46.

    Article  Google Scholar 

  11. Engeli, M., Ginsburg, Th., Rutishauser, H., and E. Stiefel: Refined Iterative methods for computation of the solution and the eigenvalues of self adjoint boundary value problems. Birkhäuser Verlag Basel (1959).

    Google Scholar 

  12. Faddev, D. K., and V. N. Faddeeva: Computational Methods of Linear Algebra. (Transl.) Freeman & Co., San Francisco (1963).

    Google Scholar 

  13. Fletcher, R., and C. M. Reeves: Function minimization by conjugate gradients. Comp. J. 7 (1964), 149–153.

    Article  Google Scholar 

  14. Forsythe, G. E.: On the asymptotic directions of the s-dimensional optimum gradient method. Num. Math. 11 (1968), 57–76.

    Article  Google Scholar 

  15. Fox, R. L., and M. P. Kapoor: A minimization method for the solution of the eigen-problem arising in structural dynamics. 2nd Conf. on Matrix meth. in struct. Engnr. Wright Patterson AFB, Ohio, 15–17. oct. 1968, Clearinghouse AD 703685, 271–306.

    Google Scholar 

  16. Fried, I.: Gradient methods for finite element eigenproblems. AIAA Jour. 7 (1969), 739–741.

    Article  Google Scholar 

  17. Fried, I.: Optimal gradient minimization scheme for finite element eigenproblems. J. Sound. Vib. 20 (1972), 333–342.

    Article  Google Scholar 

  18. Fried, I.: Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number. J. Sound. Vib. 22 (1972), 407–418.

    Article  Google Scholar 

  19. Geradin, M.: The computational efficiency of a new minimization algorithm for eigen-value analysis. J. Sound. Vib. 19 (1971), 319–331.

    Article  Google Scholar 

  20. Geradin, M.: Analyse dynamique duals des structures par la méthode des éléments finis. Diss. Univ. de Liège, Belgium, (1972).

    Google Scholar 

  21. Golub, G. H., Underwood, R., and J. H. Wilkinson: The Lanczos algorithm for the symmetric Ax = λBx problem. Techn. Rep. STAN-CS-72–270, Stanford University.

    Google Scholar 

  22. Golub, G. H.: Some uses of the Lanczos Algorithm in numerical linear algebra. Conf. Num. An. Dublin Aug (1972).

    Google Scholar 

  23. Hestenes, M. R.: Multiplier and gradient methods. Jour. Opt. Theory Appl. 4 (1969), 303–320.

    Article  Google Scholar 

  24. Hestenes, M. R., and W. Karush: A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix. NBS Jour. Res. 47 (1952), 45–61.

    Google Scholar 

  25. Hestenes, M. R., and E. Stiefel: Methods of conjugate gradients for solving linear systems. NBS Jour. Res. 49 (1952), 409–436.

    Google Scholar 

  26. Householder, A. S.: The Theory of matrices in numerical analysis. Blaisdell, New York (1964).

    Google Scholar 

  27. Kahan, W.: Relaxation methods for an eigenproblem. Tech. Rep. CS-44, Comp. Sci. Dept. Stanford University (1966).

    Google Scholar 

  28. Kammerer, W. J., and M. Z. Nashed: On the convergence of the conjugate gradient method for singular linear operator equation. SIAM J. Num. An. 9 (1972), 165–181.

    Article  Google Scholar 

  29. Kaniel, S.: Estimates for some computational techniques in linear algebra. Math. Comp. 20 (1966), 369–378.

    Article  Google Scholar 

  30. Karush, W.: An iterative method for finding characteristic vectors of a symmetric matrix. Pacific J. Math. 1 (1951), 233–248.

    Google Scholar 

  31. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. NBS J. Res. 45 (1950), 255–282.

    Google Scholar 

  32. Miele, A., and J. W. Cantrell: Memory gradient method for the minimization of functions. Symp. Optimization, Lecture Notes Math. 132, Springer-Verlag, BerlinHeidelberg-New York (1970), 252–263.

    Google Scholar 

  33. Nesbet, R. K.: Algorithm for diagonalization of large matrices. J. Chem. Physics 43 (1965), 311–312.

    Article  Google Scholar 

  34. Paige, C. C.: Practical use of the symmetric Lanczos process with re-orthogonalization. BIT 10 (1970), 183–195.

    Article  Google Scholar 

  35. Paige, C. C.: The computation of eigenvalues and eigenvectors of very large sparse matrices. Diss. London Univ. Institute of Computer Science (1971).

    Google Scholar 

  36. Paige, C. C.: Eigenvalues of perturbed hermitian matrices. (to appear).

    Google Scholar 

  37. Polak, E. et G. Ribiére: Note sur la convergence de méthodes de diréctions con-jugées. Rev. Franc. Inf. Rech. Oper. 16-R1 (1969), 35–43.

    Google Scholar 

  38. Polyak, B. T.: The conjugate gradient method in extremal problems. Zh.VychisL Mat. mat. Fiz. 9 (1969), 807–821. Trnasl. USSR Comp. Mat. Mat. Phys. 7, 4, 94–112.

    Google Scholar 

  39. Reid, J. K.: On the method of conjugate gradients for the solution of large sparse systems of linear equations. In J. K. Reid (Ed.) Large Sparse Sets of Linear Equations. Acad. Press, London (1971), 231–254.

    Google Scholar 

  40. Ruhe, A, and T. Wiberg: The method of conjugate gradients used in inverse iteration. BIT 12 (1972).

    Google Scholar 

  41. Ruhe, A., and T. Wiberg: Computing the dominant eigenvalue and the corresponding eigenvector by a Lanczos-c-g iteration. (to Appear in BIT).

    Google Scholar 

  42. Rutishauser, H.: Computational aspects of F. L. Bauer’s simultaneous iteration method. Num. Math. 13 (1969), 4–13.

    Article  Google Scholar 

  43. Rutishauser, H.: Simultaneous iteration method for symmetric matrices. Handbook of Automatic Computation 2, Linear Algebra, Springer-Verlag (1971), 284302.

    Google Scholar 

  44. Shavitt, I.: Modification of Nesbet’s algorithm for the iterative evaluation of eigenvalues and eigenvectors of large matrices. Jour. Comp. Phys. 6 (1970), 124–130.

    Article  Google Scholar 

  45. Weaver, W., and D. M. Yoshida: The eigenvalue problem for banded matrices. Computers & Structures 1 (1971), 651–664.

    Article  Google Scholar 

  46. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965).

    Google Scholar 

  47. Wilkinson, J. H., and C. Reinsch (Eds): Handbook for Autom. Computation Vol II, Linear Algebra. Springer-Verlag, Berlin-Heidelberg-New York (1971).

    Google Scholar 

  48. Zingmark, S.: Beräkning av flera egenvärden med iterativ Lanczosalgoritm. (in Swedish) Tech. Rep. UMINF-25.72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Basel AG

About this chapter

Cite this chapter

Ruhe, A. (1974). Iterative Eigenvalue Algorithms for Large Symmetric Matrices. In: Numerische Behandlung von Eigenwertaufgaben. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 24. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5518-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5518-1_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5519-8

  • Online ISBN: 978-3-0348-5518-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics