Skip to main content

Derivation Ranges: Open Problems

  • Chapter

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 2))

Abstract

For A in the algebra B(H) of bounded linear operators on a separable complex Hilbert space H the corresponding inner derivation δA on B(H) is given by δA(X)=AX−XA. If dim H<∞ then (*) B(H)=RA)⊗{A*}′ is the orthogonal direct sum of the range of δA and the commutant of A* with respect to the inner product (X,Y)=trace (XY*). This simple formula suggests that RA) is just as natural a subspace of B(H) as its orthogonal complement {A*}′ and hence is worthy of its own investigation.

Research supported in part by a grant from the National Science Foundation

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.H.: Derivations, commutators, and the essential numerical range, Ph.D.thesis, Indiana University, 1971.

    Google Scholar 

  2. Anderson, J.H.: Derivation ranges and the identity, Bull. Amer. Math. Soc. 79 (1973), 705–708.

    Article  Google Scholar 

  3. Anderson, J.H.; Foiaş, C.: Properties which normal operators share with normal derivations and related operators, Pacific J. Math. 61 (1975), 313–325.

    Article  Google Scholar 

  4. Anderson, J.H.; Bunce, J.W.; Deddens, J.A.; Williams, J.P.: C*-algebras and derivation ranges: d-symmetric operators, Acta Sci. Math. (Szeged) 40 (1978), 211–227.

    Google Scholar 

  5. Apostol, C.: Inner derivations with closed range, Rev. Roumaine, Math. Pures et Appl. 21 (1976), 249–265.

    Google Scholar 

  6. Brown, A.; Pearcy, C.: Structure of commutators of operators, Ann. Math. 82 (1965), 112–127.

    Article  Google Scholar 

  7. Duren, P.L.: Theory of H p Spaces, Academic Press, New York, 1970.

    Google Scholar 

  8. Herrero, D.A.: Intersections of commutants with closures of derivation ranges, Proc. Amer. Math. Soc. 74 (1979), 29–34.

    Article  Google Scholar 

  9. Yang Ho: Derivations on B(H), Ph.D. thesis, Indiana University, 1973.

    Google Scholar 

  10. Yang Ho: Commutants and derivation ranges, Tôhoku Math. J. 27 (1975), 509–514.

    Article  Google Scholar 

  11. Johnson, B. E.; Williams J.P.: The range of a normal derivation, Pacific J. Math. 58 (1975), 105–122.

    Article  Google Scholar 

  12. Kim, H.W.: On compact operators in the weak closure of the range of a derivation, Proc. Amer. Math. Soc. 40 (1973), 482–486.

    Article  Google Scholar 

  13. Kleinecke, D.C.: On Operator commutators, Proc. Amer. Math. Soc. 8 (1975), 535–536.

    Article  Google Scholar 

  14. Shirokov, F.V.: Proof of a conjecture of Kaplansky, Uspekhi Mat. Nlauk. 11 (1956), 167–168.

    Google Scholar 

  15. Stampfli, J.G.: Derivations on B(H): The range, Ill. J. Math. 17 (1973), 518–524.

    Google Scholar 

  16. Stampfli, J.G.: On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 52 (1975), 117–120.

    Article  Google Scholar 

  17. Weber, R.E.: Analytic functions, ideals, and derivation ranges, Proc. Amar. Math. Soc. 40 (1973), 492–497.

    Article  Google Scholar 

  18. Weber, R.E.: Derivations and the trace class operators, Proc.Amer. Math. Soc. 73 (1979), 79–82.

    Article  Google Scholar 

  19. Wielandt, H.: Ü ber die Unbeschränktheit de Operatoren des Quantenmechanik, Math. Ann. 121 (1949), 21.

    Article  Google Scholar 

  20. Williams, J.P.: Finite operators, Proc. Amer. Math. Soc. 26 (1970), 129–136.

    Article  Google Scholar 

  21. Williams, J.P.: On the range of a derivation, Pacific J. Math. 38 (1971), 273–279.

    Article  Google Scholar 

  22. Williams, J.P.: On the range of a derivation. II, Proc. Roy. Irish Acad. Sect.A 74 (1974), 299–310.

    Google Scholar 

  23. Wintner, A.: The unboundedness of quantum-mechanical matrices, Phys. Rev. 71 (1947), 738–739.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Basel AG

About this chapter

Cite this chapter

Williams, J.P. (1981). Derivation Ranges: Open Problems. In: Apostol, C., Douglas, R.G., Nagy, B.S., Voiculescu, D., Arsene, G. (eds) Topics in Modern Operator Theory. Operator Theory: Advances and Applications, vol 2. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5456-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5456-6_21

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-1244-2

  • Online ISBN: 978-3-0348-5456-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics