Advertisement

The Electrical Conductivity for the Partially Ionized Hydrogen Plasma

  • D. Kremp
  • G. Röpke
  • M. Schlanges
Part of the Experientia Supplementum book series (EXS, volume 47)

Abstract

The electrical conductivity of a hydrogen plasma for parameter values of temperature and pressure where the plasma is partially ionized is determined not only by scattering between free carriers, but is influenced also by the occurrence of bound states. The general methods to calculate the electrical conductivity of a plasma were described in chapters 3. and 4. In this chapter, we give explicit results for the partially ionized hydrogen plasma which take into account bound states as well as the scattering of the free particles by the bound states. Especially the influence of bound states on the conductivity was discussed within the frame of linear response theory in section 3.3.7. The main results of this approach are summarized below. In chapter 4. generalized quantum kinetic equations are given, which include the effects of the formation, the decay and the scattering of H-atoms in the three-particle collisions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 6

  1. [1]
    Chapman, S. and Cowling, T. G.: The mathematical Theory of non-uniform Gases. University Press, Cambridge 1953.Google Scholar
  2. [2]
    Klimontovich, Y. L. and Kremp, D.: Physica 109A (1981) 517.CrossRefGoogle Scholar
  3. [3]
    Ebeling, W., Kraeft, W. D. and Kremp, D.: Theory of Bound States and Ionization Equilibrium, Akademie-Verlag, Berlin 1976.Google Scholar
  4. [4]
    Röpke, G.: Ann. Phys. (Leipzig) 39 (1982) 35;Google Scholar
  5. [4a]
    Röpke, G.: Teor. matem. fiz. (USSR) 46 (1981) 279; Physica A, to be published (1983).Google Scholar
  6. [5]
    Meister, B. V. and Röpke, G.: Ann. Phys. (Leipzig) 39 (1982) 133.Google Scholar
  7. [5a]
    Röpke, G. and Höhne, F. E.: Phys. stat. sol. (b) 107 (1981) 603.CrossRefGoogle Scholar
  8. [6]
    Rogers, F. J.: Phys. Rev. A4 (1971) 1145.CrossRefGoogle Scholar
  9. [7]
    Dalitz, R. H.: Proc. Roy. Soc. A206 (1951) 509.CrossRefGoogle Scholar
  10. [8]
    Mott, N. F. and Massey, H. S.: The Theory of Atomic Collisions. Clarendon Press, Oxford 1965Google Scholar
  11. [9]
    Gryaznov, V. K. et al. (Грязнов, В. К., и. др.): Теплофизические свойства рабочих сред газофазного ядерново реактора. Атомиздат, Moscow 1980.Google Scholar
  12. [10]
    Holt, A. R., Moiseiwitsch, B. L.: J. Phys. B1 (1968) 36.Google Scholar
  13. [11]
    Meyer, J. R and Barloti, F. J.: Phys. Rev. B24 (1982) 2089.Google Scholar
  14. [12]
    Kremp, D., Schlanges, M., Kühn, K. H.: Phys. Lett., in press.Google Scholar
  15. [13]
    Röpke, G., Schmidt, M., Redmer, R.: Wiss. Z. der Wilhelm-Pieck-Universität Rostock 31 (1982) 55.Google Scholar

Copyright information

© Springer Basel AG 1984

Authors and Affiliations

  • D. Kremp
  • G. Röpke
  • M. Schlanges

There are no affiliations available

Personalised recommendations