Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Compressional and shear-wave velocities (V p and V s ) of 210 minicores of carbonates from different areas and ages were measured under variable confining and pore-fluid pressures. The lithologies of the samples range from unconsolidated carbonate mud to completely lithified limestones. The velocity measurements enable us to relate velocity variations in carbonates to factors such as mineralogy, porosity, pore types and density and to quantify the velocity effects of compaction and other diagenetic alterations.

Pure carbonate rocks show, unlike siliciclastic or shaly sediments, little direct correlation between acoustic properties (V p and V s ) with age or burial depth of the sediment so that velocity inversions with increasing depth are common. Rather, sonic velocity in carbonates is controlled by the combined effect of depositional lithology and several post-depositional processes, such as cementation or dissolution, which results in fabrics specific to carbonates. These diagenetic fabrics can be directly correlated to the sonic velocity of the rocks.

At 8 MPa effective pressure V p ranges from 1700 to 6500 m/s, and V s ranges from 800 to 3400 m/s. This range is mainly caused by variations in the amount and type of porosity and not by variations in mineralogy. In general, the measured velocities show a positive correlation with density and an inverse correlation with porosity, but departures from the general trends of correlation can be as high as 2500 m/s. These deviations can be explained by the occurrence of different pore types that form during specific diagenetic phases. Our data set further suggests that commonly used correlations like “Gardner’s Law” (V p -density) or the “time-average-equation” (V p -porosity) should be significantly modified towards higher velocities before being applied to carbonates.

The velocity measurements of unconsolidated carbonate mud at different stages of experimental compaction show that the velocity increase due to compaction is lower than the observed velocity increase at decreasing porosities in natural rocks. This discrepancy shows that diagenetic changes that accompany compaction influence velocity more than solely compaction at increasing overburden pressure.

The susceptibility of carbonates to diagenetic changes, that occur far more quickly than compaction, causes a special velocity distribution in carbonates and complicates velocity estimations. By assigning characteristic velocity patterns to the observed diagenetic processes, we are able to link sonic velocity to the diagenetic stage of the rock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anselmetti, F. S., Eberli, G. P., Sellami, S., and Bernoulli, D., From outcrops to seismic profiles: An attempt to model the carbonate platform margin of the Maiella, Italy. In Abstract with Programs (Geol. Society of America, Annual Meeting, San Diego 1991).

    Google Scholar 

  • Biddle, K. V., Schlager, W., Rudolph, K. W., and Bush, T. L. (1992), Seismic Model of a Progradational Carbonate Platform, Picco di Vallandro, the Dolomites, Northern Italy, American Association of Petroleum Geologists Bull. 76, 14–30.

    Google Scholar 

  • Biot, M. A. (1956), Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid, I. Low Frequency Range, II. Higher Frequency Range, J. Acoust. Soc. Am. 28, 168–191.

    Article  Google Scholar 

  • Birch, F. (1960), The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 1, J. Geophys. Res. 65, 1083–1102.

    Article  Google Scholar 

  • Burns, S. J., and Swart, P. K. (1992), Diagenetic Processes in Holocene Carbonate Sediments: Florida Bay Mudbanks and Islands, Sedimentology. 39, 285–304.

    Article  Google Scholar 

  • Campbell, A. E., and Stafleu, J. (1992), Seismic Modelling of an Early Jurassic, Drowned Platform: The Djebel Bou Dahar, High Atlas, Morocco, American Association of Petroleum Geologists Bull. 76, 1760–1777.

    Google Scholar 

  • Christensen, N. I., and Szymanski, D. L. (1991), Seismic Properties and the Origin of Reflectivity from a Classic Paleozoic Sedimentary Sequence, Valley and Ridge Province, Southern Appalachians, Geol. Soc. Am. Bull. 103, 277–289.

    Article  Google Scholar 

  • Coyner, K. B. (1984), Effects of Stress, Pore Pressure, and Pore-fluids on Bulk Strain, Velocity and Permeability in Rocks (Ph.D. Thesis, Massachusetts Institute of Technology).

    Google Scholar 

  • Crescenti, U., Crostella, A., Donzelli, G., and Raffi, G. (1969), Stratigrafia della serie calcarea dal Lias al Miocene nella regione Marchigiano-Abruzzese, Parte II—Litostratigrafia, Bio stratigrafia, Paleogeografia, Mem. Soc. Geol. It. 8, 343–420.

    Google Scholar 

  • Dawans, J. M., and Swart, P. K. (1988), Textural and Geochemical Alterations in Late Cenozoic Bahamian Dolomites, Sedimentology. 35, 385–403.

    Article  Google Scholar 

  • Eberli, G. P., Physical properties of carbonate turbidite sequences surrounding the Bahamas: Implications for slope stability and fluid movements. In Proceedings of the Ocean Drilling Program, Scientific Results 101 (eds. Austin, J. A., Jr., and Schlager, W.) (1988) pp. 305-314.

    Google Scholar 

  • Eberli, G. P., and Ginsburg, R. N., Cenozoic progradation of Northwestern Great Bahama Bank, a record of lateral platform growth and sea-level fluctuations. In Controls on Carbonate Platform and Basin Development (SEPM Special Publication No. 44 1989) pp. 339-351.

    Google Scholar 

  • Eberli, G. P., Growth and demise of isolated carbonate platforms: Bahamian controversies. In Controversies in Modern Geology (Academic Press Limited 1991) pp. 231-248.

    Google Scholar 

  • Eberli, G. P., Bernoulli, D., Sanders, D., and Vecsei, A. (1993), From aggradation to progradation: The Maiella platform (Abruzzi, Italy). In Atlas of Cretaceous Carbonate Platforms (eds. Simo, J. T., Scott, R. W., and Masse, J.-P.) Amer. Assoc. of Petroleum Geologist Memoir. 56, 213–232.

    Google Scholar 

  • Enos, P., and Sawatsky, L. H. (1981), Pore Networks in Holocene Carbonate Sediments, J. Sed. Petrol. 51, 961–985.

    Google Scholar 

  • Enos, P., and Perkins, R. D. (1979), Evolution of Florida Bay from Island Stratigraphy, Geol. Soc. Am. Bull. 90, 59–83.

    Article  Google Scholar 

  • Gardner, G. H. F., Gardner, L. W., and Gregory, A. R. (1974), Formation Velocity and Density: The Diagnostic Basics for Stratigraphic Traps, Geophysics. 39, 770–780.

    Article  Google Scholar 

  • Gassmann, F. (1951), Elastic Waves through a Packing of Spheres, Geophysics. 16, 673–685.

    Article  Google Scholar 

  • Hamilton, E. L. (1971), Elastic Properties of Marine Sediments, J. Geophys. Res. 76/2, 579–604.

    Article  Google Scholar 

  • Hamilton, E. L. (1980), Geoacoustic Modeling of the Sea-floor, J. Acoust. Soc. Am. 68, 1313–1340.

    Article  Google Scholar 

  • Japsen, P. (1993), Influence of Lithology and Neogene Uplift on Seismic Velocities in Denmark: Implications for Depth Conversion of Maps, American Association of Petroleum Geologists Bull. 77, 194–211.

    Google Scholar 

  • Kenter, J. A. M., Ginsburg, R. N., Eberli, G. P., McNeill, D. F., and Lidz, B. H. (1991), Mio-Pliocene Sea-level Fluctuations Recorded in Core Borings from the Western Margin of Great Bahama Bank, Abstract, GSA Annual Meeting, San Diego, California.

    Google Scholar 

  • Laughton, A. S. (1957), Sound Propagation in Compacted Ocean Sediments, Geophysics. 22, 233–260.

    Article  Google Scholar 

  • Marion, D., Nur, A., Yin, H., and Han, D. (1992), Compressional Velocity and Porosity in Sand-clay Mixtures, Geophysics. 57, 554–563.

    Article  Google Scholar 

  • Milholland, P., Manghani, M. H., Schlanger, S. O., and Sutton, G. H. (1980), Geoacoustic Modeling of Deep-sea Carbonate Sediments, J. Acoust. Soc. Am. 68/5, 1351–1360.

    Article  Google Scholar 

  • Nur, A., and Simmons, G. (1969), The Effect of Saturation on Velocity in Low Porosity Rocks, Earth and Planet. Sci. Lett. 7, 183–193.

    Article  Google Scholar 

  • Nur, A., Marion. D., and Yin, H., Wave velocities in sediments. In Shear Waves in Marine Sediments (Kluwer Academic Publishers 1991) pp. 131-140.

    Google Scholar 

  • Rafavich, F., Kendall, C. H. St. C., and Todd, T. P. (1984), The Relationship between Acoustic-Properties and the Petrographic Character of Carbonate Rocks, Geophysics. 49, 1622–1636.

    Article  Google Scholar 

  • Sanders, D. G. K. (1994), The Cenomanian to Miocene Evolution of a Carbonate Platform to Basin Transition: Montagna della Maiella Abruzzi, Italy (unpubl. Diss. ETH Zürich, Switzerland).

    Google Scholar 

  • Schlanger, S. O., and Douglas, R. G., The pelagic ooze-chalk-limestone transition and its implications for marine stratigraphy. In Pelagic Sediments (eds. Hsu, K. J., and Jenkyns, H. C.) (Special Publication Int. Assoc. of Sedimentologists 1-1974) pp. 117-148.

    Google Scholar 

  • Sellami, S., Barblan, F., Mayerat, A.-M., Pfiffner, O. A., Risnes, K., and Wagner, J.-J. (1990), Compressional Wave Velocities of Samples from the NFP-20 East Seismic Reflection Profile, Mém. Soc. Géol. Suisse. 1, 77–84.

    Google Scholar 

  • Urmos, J., and Wilkens, R. H. (1993), In situ Velocities in Pelagic Carbonates: New Insights from Ocean Drilling Program Leg 130, Ontong Java Plateau, J. Geophys. Res. 98/B5, 7903–7920.

    Article  Google Scholar 

  • Vecsei, A. (1991), Aggradation und Progradation eines Karbonatplattform-Randes: Kreide bis Mittleres Tertiär der Montagna della Maiella, Abruzzen, Mitteilungen aus dem Geologischen Institut der Eigdenössischen Technischen Hochschule und der Universität Zürich, 294.

    Google Scholar 

  • Vernik, L., and Nur, A. (1992), Petrophysical Classification of Siliciclastics for Lithology and Porosity Prediction from Seismic Velocities, American Association of Petroleum Geologists Bull. 76, 1295–1309.

    Google Scholar 

  • Vidlock, S. (1983), The Stratigraphy and Sedimentation of Cluett Key, Florida Bay, M.S. Thesis, University of Connecticut.

    Google Scholar 

  • Wang, Z., Hirsche, W. K., and Sedgwick, G. (1991), Seismic Velocities in Carbonate Rocks, J. Can. Petr. Tech. 30, 112–122.

    Google Scholar 

  • Wilkens, R. H., Fryer, G. F., and Karsten, J. (1991), Evolution of Porosity and Seismic Structure of Upper Oceanic Crust: Importance of Aspect Ratios, J. Geophys. Res. 96, 17981–17995.

    Article  Google Scholar 

  • Wilson, J. L., Carbonate Facies in Geologic History (Springer, New York 1975).

    Book  Google Scholar 

  • Wood, A. B. (1941), A Textbook of Sound (Macmillan, New York 1941).

    Google Scholar 

  • Wyllie, M. R., Gregory, A. R., and Gardner, G. H. F. (1956), Elastic Wave Velocities in Heterogeneous and Porous Media, Geophysics. 21/1, 41–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Anselmetti, F.S., Eberli, G.P. (1993). Controls on Sonic Velocity in Carbonates. In: Liebermann, R.C., Sondergeld, C.H. (eds) Experimental Techniques in Mineral and Rock Physics. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5108-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5108-4_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-5028-4

  • Online ISBN: 978-3-0348-5108-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics