Skip to main content

Experimental Simulation of Plagioclase Diagenesis at P-T Conditions of 3.5 km Burial Depth

  • Chapter
Experimental Techniques in Mineral and Rock Physics

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 275 Accesses

Abstract

Dissolution of plagioclase under the physical conditions at shallow to intermediate burial depths is a prime candidate for secondary porosity generation in feldspathic siliciclastic sediments. The diagenetic behavior of granular aggregates of plagioclase feldspar and quartz has been investigated by experimentation performed in a Bridgeman-type pressure vessel. The experiments, each of two weeks duration, simulated pressure-temperature conditions approximating 3.5 km burial depth. By using a double-acting pore-fluid reservoir, solutions of various chemistries were cycled through samples composed of oligoclase or labradorite feldspar and quartz (90:10 wt% respectively).

Scanning electron microscope analysis of the post-experiment samples reveals dissolution features and precipitated products. Dissolution voids of ∼ 10 microns occur typically in areas of maximum stress such as crack-tips and grain contacts. Dissolution on a larger scale is exemplified by topographical smoothing of grain surfaces. The dissolved species are subsequently reprecipitated as Ca-enriched overgrowths (possibly zeolites) and clays. These precipitates are found individually on the scale of 10 microns and collectively as surface coatings on both feldspar and quartz grains. Atomic absorption spectroscopic analyses of the pore fluid suggest that the fluid chemistry is consistent with the observed experimental precipitates.

These experiments show that clay coatings are unnecessary precursors to grain surface dissolution and that the diagenetic precipitation is not mineral selective. Also, the mass transfer of the dissolved species appears to be localized because grains displaying both dissolution and precipitation features are commonplace. Volume changes due to mineral transformation/alteration may increase secondary porosity if the dissolved species produced from dissolution are only partially involved in reprecipitation and the remaining dissolved material is flushed out by the pore fluids. However, if the mass transfer is primarily local then permeability would significantly decrease as precipitates may choke the pore throats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Shaieb, Z., and Shelton, J. (1981), Migration of Hydrocarbons and Secondary Porosity in Sandstones, Am. Assoc. Petrol. Geol. Bull. 65, 2433–2436.

    Google Scholar 

  • Barnes, D. A., Girard, J.-P., and Aronson, J. L., K-Ar Dating of illite diagenesis in the Middle Ordovician St. Peters Sandstone, central Michigan Basin, USA: Implications for thermal history. In Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D. W., and Pittman, E. D., eds.) (S.E.P.M. Spec. Pub. 47, 1992) pp. 35–48.

    Google Scholar 

  • Bårth, T. (1991), Organic Acids and Inorganic Ions in Waters from Petroleum Reservoirs, Norwegian Continental Shelf: A Multivariate Statistical Analysis and Comparison with American Reservoir Formation Waters, Appl. Geochem. 6, 1–15.

    Article  Google Scholar 

  • Bjørlykke, K., Bergen, A., Elverhøi, O., and Malm, A. O. (1979), Diagenesis in the Mesozoic Sandstones from Spitzbergen and the North Sea, Geol. Rindschau 68, 1151–1171.

    Google Scholar 

  • Boles, J. R., Secondary porosity reactions in the Stevens Sandstone, San Joaquin Valley, California. In Clastic Diagenesis (McDonald, D. A., and Surdam, R. C, eds.) (Am. Assoc. Petrol. Geol. Mem. 37, 1984) pp. 217–224.

    Google Scholar 

  • Bowker, K. A., and Shuler, P. J. (1991), Carbon Dioxide Injection and Resultant Alteration of the Weber Sandstone, Rangely Field, Colorado, Am. Assoc. Petrol. Geol. Bull. 75, 1489–1499.

    Google Scholar 

  • Burley, S. D., and MacQuaker, J. H. S., Authigenic clays, diagenefic sequences and conceptual diagenetic models in contrasting basin-margin and basin-center North Sea Jurassic sandstones and mudstones. In Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D. W., and Pittman, E. D., eds.) (S.E.P.M. Spec. Pub. 47, 1992) pp. 81-110.

    Google Scholar 

  • Chester, F. M., and Higgs, N. G. (1992), Multimechanism Friction Constitutive Model for Ultrafine Quartz Gouge at Hypocentral Conditions, JGR (B) 97, 1859–1870.

    Article  Google Scholar 

  • Collins, A. G., Geochemistry of Oilfield Waters (Elsevier, New York 1975) 495 pp.

    Google Scholar 

  • Connolly, C. A., Walter, L. M., Baadsgaard, H., and Longstaffe, F. J. (1990), Origin and Evolution of Formation Waters, Alberta Basin, Western Canada Sedimentary Basin. I. Chemistry, Appl. Geochem. 5, 375–395.

    Article  Google Scholar 

  • Curtiss, C. D. (1985), Clay Mineral Precipitation and Transformation during Burial Diagenesis, Phil. Trans. Roy. Soc. Lond. A315, 91–105.

    Google Scholar 

  • De Sitter, L. U. (1947), Diagenesis of Oil-field Brines, Am. Assoc. Petrol. Geol. Bull. 31, 2030–2040.

    Google Scholar 

  • Dickey, P. A. (1969), Increasing Concentration of Subsurface Brines with Depth, Chem. Geol. 4, 361–370.

    Article  Google Scholar 

  • Drever, J. I., Geochemistry of Natural Waters (Prentice-Hall, Englewood Cliffs 1982) 388 pp.

    Google Scholar 

  • Dutton, S. P., and Land, L. S. (1988), Cementation and Burial History of a Low-permeability Quartarenite, Lower Cretaceous Travis Peak Formation, East Texas, Geol. Soc. Am. Bull. 100, 1271–1282.

    Article  Google Scholar 

  • Ehrenberg, S. N. (1990), Relationship between Diagenesis and Reservoir Quality in Sandstones of the Garn Formation, Haltenbanken, Mid-Norwegian Continental Shelf, Am. Assoc. Petrol. Geol. Bull. 74, 1538–1558.

    Google Scholar 

  • Fisher, J. B., and Boles, J. R. (1990), Water-rock Interactions in Tertiary Sandstones, San Joaquin Basin, California, Chem. Geol. 82, 83–101.

    Article  Google Scholar 

  • Helmold, K. P., and Van de Kamp, P. C., Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene ark oses, Santa Ynez Mountains, California. In Clastic Diagenesis (McDonald, D. A., and Surdam, R. C, eds.) (Amer. Assoc. Petrol. Geol. Mem. 37, 1984) pp. 239–275.

    Google Scholar 

  • Galloway, W. E. (1974), Deposition and Diagenetic Alteration of Sandstone in Northeast Pacific Arc-related Basins: Implications for Graywacke Genesis, Geol. Soc. Am. Bull. 85, 379–390.

    Article  Google Scholar 

  • Hajash, A., and Bloom, M. A. (1991), Marine Diagenesis of Feldspathic Sand: A Flow-through Experimental Study at 200°C, 1 Kbar, Chem. Geol. 89, 359–377.

    Article  Google Scholar 

  • Houseknecht, D. W. (1984), Influence of Grain Size and Temperature on Intergranular Pressure Solution, Quartz Cementation, and Porosity in a Quartzose Sandstone, J. Sedim. Petrol. 54, 348–361.

    Google Scholar 

  • Houseknecht, D. W. (1987), Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones, Am. Assoc. Petrol. Geol. Bull. 71, 633–642.

    Google Scholar 

  • Kaiser, W. R., Predicting reservoir quality and diagenetic history in the Frio Formation (Oligocene) of Texas. In Clastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Amer. Assoc. Petrol. Geol. Mem. 37, 1984) pp. 195–215.

    Google Scholar 

  • Land, L. S., Milliken, K. L., and McBride, E. F. (1987), Diagenetic Evolution of Cenozoic Sandstones, Gulf of Mexico Sedimentary Basin, Sedim. Geol. 50, 195–225.

    Article  Google Scholar 

  • Longstaffe, F. J., Tilley, B. J., Ayalon, A., and Connelly, C. A., Controls on porewater evolution during sandstone diagenesis, western Canada sedimentary basin: An oxygen isotope perspective. In Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D. W., and Pittman, E. D., eds.) (S.E.P.M. Spec. Pub. 47, 1992) pp. 13–34.

    Google Scholar 

  • Loucks, R. G., Dodge, M. M., and Galloway, W. E., Regional controls on diagenesis and reservoir quality in lower Tertiary sandstones along the Texas Gulf Coast. In Clastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Amer. Assoc. Petrol. Geol. Mem. 37, 1984) pp. 15–45.

    Google Scholar 

  • Marone, C., Rubenstone, J., and Engelder, T. (1988), An Experimental Study of Permeability and Fluid Chemistry in an Artificially Jointed Marble, J. Geol. Res. 93(B), 13763–13775.

    Article  Google Scholar 

  • Mathisen, M. E., Diagenesis of Plio-pleistocene nonmarine sandstones, Cayagan Basin, Philippines: Early development of secondary porosity in volcanic sandstones. In Clastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Am. Assoc. Petrol. Geol. Mem. 37, 1984) pp. 177–193.

    Google Scholar 

  • McBride, E. F., Land, L. S., and Mack, L. E. (1987), Diagenesis of Eolian and Fluvial Feldspathic Sandstones, Norphlet Formation (Upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama, Am. Assoc. Petrol. Geol. Bull. 71, 1019–1034.

    Google Scholar 

  • Milliken, K. L., McBride, E. F., and Land, L. S. (1989), Numerical Assessment of Dissolution versus Replacement in the Subsurface Destruction of Detrital Feldspars, Oligocene Frio Formation, South Texas, J. Sedim. Petrol. 59, 740–757.

    Article  Google Scholar 

  • Milliken, K. L. (1992), Chemical Behavior of Detrital Feldspars in Mudrocks versus Sandstones, Frio Formation (Oligocene), South Texas, J. Sedim. Petrol. 62, 790–801.

    Google Scholar 

  • Moncure, G. K., Lahann, R. W., and Siebert, R. M., Origin of secondary porosity and cement distribution in a sandstone / shale sequence from the Frio Formation (Oligocene). In Clastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Amer. Assoc. Petrol. Geol. Mem. 37, 1984) pp. 151–161.

    Google Scholar 

  • Nesbitt, H. W., Macrae, N. D., and Shotyk, W. (1991), Congruent and Incongruent Dissolution of Labradorite in Dilute, Acidic, Salt Solutions, J. Geol. 99, 429–442.

    Article  Google Scholar 

  • Overton, H. L. (1973), Water Chemistry Analysis in Sedimentary Basins, Soc. Prof. Well Log Anal. Annual Logging Symp., Trans No. 14 (L), 22 pp.

    Google Scholar 

  • Petrovic, R., Berner, R. A., and Goldhaber, M. B. (1976), Rate Control in Dissolution of Alkali Feldspars—I: Study of Residual Feldspar Grains by X-ray Photoelectron Spectroscopy, Geochim. et Cosmochim. Acta 40, 537–548.

    Article  Google Scholar 

  • Richardson, S. M., and McSween Jr., H. Y., Geochemistry: Pathways and Processes (Prentice-Hall, Englewood Cliffs 1989) 488 pp.

    Google Scholar 

  • Rittenhouse, G. (1971), Pore-space Reduction by Solution and Cementation, Amer. Assoc. Petrol. Geol. Bull. 55, 80–91.

    Google Scholar 

  • Schmidt, V., and McDonald, D. A., The role of secondary porosity in the course of sandstone diagenesis. In Aspects of Diagenesis (Scholle, P. A., and Schluger, P. R., eds.) (S.E.P.M. Spec. Pub. 26, 1979) pp. 175–201.

    Google Scholar 

  • Scholz, C. H., and Koczynski, T. A. (1979), Dilatancy Anisotropy and the Response of Rock to Large Cyclic Loads, JGR (B) 84, 5525–5534.

    Article  Google Scholar 

  • Schutjens, P. M. T. M. (1991), Experimental Compaction of Quartz Sand at Low Effective Stress and Temperature Conditions, J. Geol. Soc. Lond. 148, 527–539.

    Article  Google Scholar 

  • Selley, R. C., Elements of Petroleum Geology (W. H. Freeman and Co., New York 1985) 449 pp.

    Google Scholar 

  • Small, J. S., Hamilton, D. L., and Habesch, S. (1992a), Experimental Simulation of Clay Precipitation within Reservoir Sandstones I: Techniques and Examples, J. Sedim. Petrol. 62, 508–519.

    Article  Google Scholar 

  • Small, J. S., Hamilton, D. L., and Habesch, S. (1992b), Experimental Simulation of Clay Precipitation within Reservoir Sandstones II: Mechanism of Illite Formation and Controls on Morphology, J. Sedim. Petrol. 62, 520–529.

    Article  Google Scholar 

  • Smith, J. V., Phase equilibria of plagioclase. In Feldspar Mineralogy (Ribbe, P. H., ed.) (Mineral. Soc. Amer. Rev. in Mineral Vol. 2, 1983) pp. 223–239.

    Google Scholar 

  • Stoessell, R. K., and Pittman, E. D. (1990), Secondary Porosity Revisited: The Chemistry of Feldspar Dissolution by Carboxylic Acids and Anions, Am. Assoc. Petrol. Geol. Bull. 74, 1795–1805.

    Google Scholar 

  • Surdam, R. C., Crossey, L. J., Hagen, E. S., and Heasler, H. P. (1989), Organic-inorganic Interactions and Sandstone Diagenesis, Am. Assoc. Petrol. Geol. Bull. 73, 1–23.

    Google Scholar 

  • Van Elsberg, J. M. (1978), A New Approach to Sediment Diagenesis. Part I: An Observed Relationship between Sonic Transit-time and Depth in the Tertiary Sediments of the Mackenzie Delta; A Potential Exploration Tool. Part II: A Revised Concept of Sediment Diagenesis, Can. Petrol. Geol. Bull. 26, 57–86.

    Google Scholar 

  • White, D. E., Saline waters of sedimentary rocks. In Fluids in Subsurface Environments (Young, A., and Galley, J. E., eds.) (Am. Assoc. Petrol. Geol. Mem. 4, 1965) pp. 342–366.

    Google Scholar 

  • Yin, P., and Surdam, R. C. (1985), Naturally Enhanced Porosity and Permeability in the Hydrocarbon Reservoirs of the Gippsland Basin, Australia, Proc. of the First Enhanced Oil Recovery Symposium, 79-109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Karner, S.L., Schreiber, B.C. (1993). Experimental Simulation of Plagioclase Diagenesis at P-T Conditions of 3.5 km Burial Depth. In: Liebermann, R.C., Sondergeld, C.H. (eds) Experimental Techniques in Mineral and Rock Physics. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5108-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5108-4_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-5028-4

  • Online ISBN: 978-3-0348-5108-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics