Skip to main content

The Strength and Rheology of Commercial Tungsten Carbide Cermets used in High-pressure Apparatus

  • Chapter
Experimental Techniques in Mineral and Rock Physics

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Uniaxial compressive stress-strain curves have been measured on a suite of 26 commercial grades of tungsten carbide cermets and three maraging steels of interest for use in high-pressure apparatus. Tests were conducted on cylindrical specimens with a length to diameter ratio of two. Load was applied to the specimens by tungsten carbide anvils padded by extrudable lead disks. Interference fit binding rings of maraging steel were pressed on to the ends of the specimens to inhibit premature corner fractures. Bonded resistance strain gages were used to measure both axial and tangential strains. Deformation was exremely uniform in the central, gauged portion of the specimens. Tests were conducted at a constant engineering strain rate of 1 × 10−5 S−l. The composition of the specimens was principally WC/Co with minor amounts of other carbides in some cases. The Co weight fraction ranged from 2 to 15%. Observed compressive strengths ranged from about 4 to just above 8 GPa. Axial strain amplitude at failure varied from ∼ 1.5% to ∼9%. Representative stress-strain curves and a ranking of the grades in terms of yield strength and strain at failure are presented. A power law strain hardening relation and the Ramberg-Osgood stress-strain equation were fit to the data. Fits were very good for both functions to axial strain amplitudes of about 2%. The failure of these established functions is accompanied by an abrupt change in the trend of volumetric strain consistent with the onset of substantial microcrack volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brace, W. F., Paulding, B. W., and Scholz, C. (1966), Dilatancy in the Fracture of Crystalline Rocks, J. Geophys. Res. 71, 3939–3953.

    Article  Google Scholar 

  • Doi, H., Fujiwara, Y., and Miyake, K. (1969), Mechanism of Plastic Deformation and Dislocation Damping of Cemented Carbides, Trans. Met. Soc. of AIME 245, 1457–1470.

    Google Scholar 

  • Exner, H. E. (1979), Physical and Chemical Nature of Cemented Carbides. International Metals Reviews 4, 149–173.

    Article  Google Scholar 

  • Exner, H. E., and Gurland, J. (1970), A Review of Parameters Influencing Some Mechanical Properties of Tungsten Carbide-cobalt Alloys, Powder Metallurgy 13, 13–31.

    Google Scholar 

  • Fischmeister, H. F., Schmauder, S., and Sigl, L. S. (1988), Finite Element Modeling of Crack Propagation in WC-Co Hard Metals, Mater. Sci. Engr. A 105/106, 305–311.

    Google Scholar 

  • Godse, R., and Gurland, J. (1988), Applicability of the Critical Strain Fracture Criterion to WC-Co Hard Metals, Mater. Sci. Engr. A 105/106, 331–336.

    Google Scholar 

  • Han, D., and Mecholsky Jr., J. J. (1990), Fracture Analysis of Cobalt-bonded Tungsten Carbide Composites, J. Mater. Sci. 25, 4949–4956.

    Article  Google Scholar 

  • Han, D., and Mecholsky Jr., J. J. (1991), Fracture Behavior of Metal Particulate-reinforced WC-Co Composites, Mater. Sci. Engr. A144, 293–302.

    Google Scholar 

  • Hanabusa, T., Nishioka, K., and Fujiwara, H. (1983), Criterion for the Triaxial X-ray Residual Stress Analysis, Z. Metallkde. 74, 307–313.

    Google Scholar 

  • Hara, A., and Ikeda, T. (1972), Behavior of Compressive Deformation of WC-Co Cemented Carbide, Trans. Jpn. Inst. Met. 13, 129–133.

    Google Scholar 

  • Haygarth, J. C., and Kennedy, G. C. (1967), Crushing Strength of Cemented Tungsten Carbide Pistons, Rev. Sci. Instru. 38, 1590–1592.

    Article  Google Scholar 

  • Jayaram, V., Kronenberg, A., and Kirby, S. H. (1986), Plastic Deformation of WC-Co at High Confining Pressure, Scripta Metallurgica 20, 701–705.

    Article  Google Scholar 

  • Johannesson, B., and Warren, R. (1988), Subcritical Crack Growth and Plastic Deformation in the Fracture of Hard Metals, Mater. Sci. Engr. A 105/106, 353–361.

    Google Scholar 

  • Johansson, I., Persson, G., and Hiltscher, R. (1970), Determination of Static and Fatigue Compressive Strength of Hard Metals, Powder Metallurgy 13, 449–464.

    Google Scholar 

  • Kerper, M. J., Mong, L. E., Stiefel, M. B., and Holley, S. F. (1958), Evaluation of Tensile, Compressive, Torsional, Transverse, and Impact Tests and Correlation of Results for Brittle Cermets, J. Res. Nat. Bureau of Standards 61, 149–169.

    Article  Google Scholar 

  • Krawitz, A. D., Reichel, D. G., and Hitterman, R. L. (1989), Residual Stress and Stress Distribution in a WC-Ni Composite, Mater. Sci. Engr. A119, 127–134.

    Google Scholar 

  • Krawitz, A. D., Roberts, R., and Faber, J., Residual stress relaxation in cemented carbide composites. In Proc. 2nd Int. Confi on the Science of Hard Materials (ed. Almond, E. A., Brookes, C. A., and Warren, R.) (Adam Hilger Ltd., 1986) pp. 577-589.

    Google Scholar 

  • Laugier, M. T. (1988), Elevated Temperature Properties of WC-Co Cemented Carbides, Mater. Sci. Engr. A105/106, 363–367.

    Google Scholar 

  • Lemaitre, J., and Chaboche, J., Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990).

    Book  Google Scholar 

  • Lubliner, J., Plasticity Theory (Macmillan Publishing Co., New York, 1990).

    Google Scholar 

  • Nabarro, F. R. N., and Vekinis, G. (1988), Pre-compression, Internal Stresses and Coercivity in WC-Co, Mater. Sci. Engr. A105/106, 337–342.

    Google Scholar 

  • Paterson, M. S., Experimental Rock Deformation, The Brittle Field (M. S., Springer-Verlag, New York, 1978).

    Book  Google Scholar 

  • Pelepelin, V. M. (1965), Effect of Plastic Deformation of the Physicomechanical Properties of Tungsten Carbide-cobalt Hard Alloys, Poroshkovaya Metallurgica 35, 76–82.

    Google Scholar 

  • Pelepelin, V. M. (1967), Variation in Density and Coefficient of Transverse Deformation of Hard Alloys, Poroshkovaya Metallurgica 59, 108–110.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teuklsky, A. S., Vetterling, W. T., Numerical Recipes in C, The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  • Rowcliffe, D. J. Jayaram, V., Hibbs, M. K., and Sinclair, R. (1988), Compressive Deformation and Fracture in WC Materials, Mater. Sci. Engr. A 105/106, 299–303.

    Google Scholar 

  • Sarin, V. K., and Johannesson, T. (1975), On the Deformation of WC-Co Cemented Carbides, Metal Science 9, 472–476.

    Article  Google Scholar 

  • Schmid, H. G., Mari, D., Benoit, W., and Bonjour, C. (1988), The Mechanical Behavior of Cemented Carbides at High Temperatures, Mater. Sci. Engr. A 105/106, 343–351.

    Google Scholar 

  • Seely, F. B., and Smith, J. O., Advanced Mechanics of Materials (John Wiley and Sons, Inc., New York, 1967).

    Google Scholar 

  • Shanley, F. R., Strength of Materials (The Maple Press, York, PA 1957).

    Google Scholar 

  • Spiegler, R., and Fischmeister, H. F. (1992), Prediction of Crack Paths in WC-Co Alloys, Acta Metall. Mater. 40, 1653–1661.

    Article  Google Scholar 

  • Suresh, S. (1988), The Failure of Hard Materials in Cyclic Compression: Theory, Experiments and Applications, Mater. Sci. Engr. A 105/106, 323–329.

    Google Scholar 

  • Vandeput, R. R., and Mastrantonis, N. (1988), A Comparison of the Strength of WC-Co Measured by Ring and Transverse Rupture Strength Specimens, Mater. Sci. Engr. A 105/106, 423–428.

    Google Scholar 

  • Vasel, C. H., Krawitz, A. D., Drake, E. F., and Kenik, E. A. (1985), Binder Deformation in WC-(Co, Ni) Cemented Carbide Composites, Metall. Trans. A 16A, 2309–2317.

    Google Scholar 

  • Vekinis, G., and Luyckx, S. B. (1987), The Effects of Cyclic Pre compression on the Magnetic Coercivity of WC-6wt%Co, Mater. Sci. Engr. 96, L21–L23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Getting, I.C., Chen, G., Brown, J.A. (1993). The Strength and Rheology of Commercial Tungsten Carbide Cermets used in High-pressure Apparatus. In: Liebermann, R.C., Sondergeld, C.H. (eds) Experimental Techniques in Mineral and Rock Physics. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5108-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5108-4_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-5028-4

  • Online ISBN: 978-3-0348-5108-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics