Skip to main content

Abstract

In recent years, certain aspects of the theory of best polynomial approximation on a real interval have been generalized. Classical theorems concerning existence and uniqueness of a polynomial of best approximation, and characterization of this polynomial by alternation properties, have found extensions and analogs when polynomials are replaced by linear combinations of prescribed continous functions. See, e.g. [2, 3, 4, 5, 7, 8, 9, 10, 11], for typical studies of this kind (especially [8], [11] for the general background). Quite recently, there has been some interest ([1], [6]) in corresponding extensions of the theory of approximation by rational functions. The present note is a contribution to this discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheney, E.W. and H.L. Loeb: Generalized Rational Approximation I.

    Google Scholar 

  2. Garkavi, A.L.: On best nets and best sections of sets in normed spaces. Izv. Akad. Nauk U.S.S.R. 26 (1962), 87–106 (Russian).

    MathSciNet  MATH  Google Scholar 

  3. Havinson, S.Ya.: Extremal and approximation problems with supplementary conditions, in “Investigations on Contemporary Problems in the Constructive Theory of Functions”, ed. V.I. Smirnov, Moscow 1961, 347–352 (Russian).

    Google Scholar 

  4. Newman, D.J. and H.S. Shapiro: Some theorems on Cebys’ev approximation. Duke Math. J. (in press).

    Google Scholar 

  5. Remez, E.Ya.: General Computational Methods of Cebys’ev Approximation. Kiev 1957 (Russian).

    Google Scholar 

  6. Rice, J.R.: Čebyš’ev approximations by functions unisolvent of variable degree, Trans. Amer. Math. Soc. 99 (1961), 298–302.

    Article  MathSciNet  MATH  Google Scholar 

  7. Rivlin, T.J. and H.S. Shapiro: Some uniqueness problems in approximation theory. Comm. Pure Appl. Math. 13 (1960), 35–47.

    Article  MathSciNet  MATH  Google Scholar 

  8. Rivlin, T.J. and H.S. Shapiro: A unified approach to certain problems of approximation and minimization. J. Soc. Indust. App. Math, 9 (1961), 670–699.

    Article  MathSciNet  MATH  Google Scholar 

  9. Šaškin, Yu.A.: Korovkin systems in spaces of continuous functions. Izv. Akad. Nauk U.S.S.R. 26 (1962), 495–512.

    Google Scholar 

  10. Walsh, J.L.: The existence of rational functions of best approximation. Trans. Amer. Math. Soc. 33 (1931), 668–689.

    Article  MathSciNet  Google Scholar 

  11. Zuhovickǐi, S.I.: On approximation of real functions in the sense of P.L. Čebyš’ev. Usp. Mat. Nauk 11. (1956), 125–159 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. L. Butzer J. Korevaar

Rights and permissions

Reprints and permissions

Copyright information

© 1964 Springer Basel AG

About this chapter

Cite this chapter

Newman, D.J., Shapiro, H.S. (1964). Approximation by Generalized Rational Functions. In: Butzer, P.L., Korevaar, J. (eds) On Approximation Theory / Über Approximationstheorie. ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Nummerischen Mathematik / Série Internationale D’Analyse Numérique, vol 5 . Springer, Basel. https://doi.org/10.1007/978-3-0348-4131-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-4131-3_25

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-4058-3

  • Online ISBN: 978-3-0348-4131-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics