Skip to main content

Pulmonary Alveolar Proteinosis: A Historic Perspective

  • Chapter
  • First Online:
Treatment of Cystic Fibrosis and Other Rare Lung Diseases

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Since the first report, the pathogenesis of pulmonary alveolar proteinosis (PAP) had been mysterious. In 1999, we discovered granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody in the blood and lung of idiopathic PAP, which consisted 90 % of acquired PAP and was later named as autoimmune PAP. Ten years later, Trapnell and his colleagues proved the hypothesis that the loss of GM-CSF bioactivity in the lung might lead PAP by developing a PAP model in nonhuman primates caused by injecting with a patient-derived GM-CSF autoantibody. The new technology for seroligical diagnosis revealed that most adult onset PAP is associated with GM-CSF autoantibody, and thus, the conventional name of “idiopathic PAP” was changed to “autoimmune PAP” of which a large cohort study was conducted in Japan by Inoue et al. reporting that PAP is distributed equally among subarctic to subtropical regions, with a 2:1 ratio of males to females and the mean age of 51 years, while efforts to develop novel treatment approaches for PAP have been continued at the same time based on the pathogenesis related to the deficiency of pulmonary GM-CSF bioactivity, aerosolized GM-CSF inhalation therapy to autoimmune PAP achieved a satisfactory success with an overall efficacy of more than 60 %. Rituximab therapy targeting reduction of GM-CSF autoantibody has been ongoing. Secondary PAP is a very rare lung disorder consisting approximately 8–9 % of acquired PAP. Hematological disorders are the most common underlying disease, of which 74 % cases demonstrated myelodysplastic syndrome in Japan and the prognosis was poor with a 2-year survival of <50 %. On the other hand, most pediatric cases of pathologically diagnosed PAP have been proven to have defects in a variety of genes involved in surfactant metabolism, such as surfactant protein B, surfactant protein C, ATP-binding cassette family of transporters, and thyroid transcription factor 1. Not only pediatric but also adult-onset PAP is caused by functional defects in the genes encoding the GM-CSF receptor (CSF2RA and CSF2RB). Thus, in the recent two-decade history of research on PAP, an outstanding progress has been achieved in a "bench-to-bedside" manner, which improved our understandings on the pathogenesis, enabled us to characterize clinical features, and increased the choice of the treatment, but efforts are still necessary to solve the mechanism for GM-CSF autoantibody production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker AD, Malur A, Bama BP, Ghosh S, Kavuru MS, Malur AG, Thomassen MJ (2010) Targeted PPAR{gamma} deficiency in alveolar macrophages disrupts surfactant catabolism. J Lipid Res 51(6):1325–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendtzen K, Svenson M, Hansen MB et al (2007) Gm-CsF autoantibodies in pulmonary alveolar proteinosis. N Engl J Med 356:2001–2002

    Article  CAS  PubMed  Google Scholar 

  • Berclaz PY et al (2002a) Endocytic internalization of adenovirus, nonspecific phagocytosis, and cytoskeletal organization are coordinately regulated in alveolar macrophages by GM-CSF and PU.1. J Immunol 169:6332–6342

    Article  CAS  PubMed  Google Scholar 

  • Berclaz PY et al (2002b) GM-CSF, via PU.1, regulates alveolar macrophage Fcgamma R-mediated phagocytosis and the IL-18/IFN-gamma-mediated molecular connection between innate and adaptive immunity in the lung. Blood 100:4193–4200

    Article  CAS  PubMed  Google Scholar 

  • Bewig B, Wang XD, Kirsten D et al (2000) Gm-CsF and Gm-CsF beta c receptor in adult patients with pulmonary alveolar proteinosis. Eur Respir J 15:350–357

    Article  CAS  PubMed  Google Scholar 

  • Bonfield TL, Farver CF, Barna BP et al (2003) Peroxisome proliferator activated receptor-gamma is deficient in alveolar macrophages from patients with alveolar proteinosis. Am J Respir Cell Mol Biol 29:677–682

    Article  CAS  PubMed  Google Scholar 

  • Cooke KR et al (1997) Persistence of pulmonary pathology and abnormal lung function in IL-3/GM-CSF/IL-5 beta c receptor-deficient mice despite correction of alveolar proteinosis after BMT. Bone Marrow Transplant 20:657–662

    Article  CAS  PubMed  Google Scholar 

  • Cordonnier C, Fleury-Feith J, Escudier E et al (1994) Secondary alveolar proteinosis is a reversible cause of respiratory failure in leukemic patients. Am J Respir Crit Care Med 149:788–794

    Article  CAS  PubMed  Google Scholar 

  • Dirksen U, Nishinakamura R, Groneck P et al (1997) Human pulmonary alveolar proteinosis associated with a defect in Gm-CsF/Il-3/Il-5 receptor common beta chain expression. J Clin Invest 100:2211–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dranoff G, Crawford AD, Sadelain M et al (1994) Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264:713–716

    Article  CAS  PubMed  Google Scholar 

  • Garmany TH, Wambach JA, Heins HB et al (2008) Population and disease-based prevalence of the common mutations associated with surfactant deficiency. Pediatr Res 63:645–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Golde DW, Territo M, Finley TN, Cline MJ (1976) Defective lung macrophages in pulmonary alveolar proteinosis. Ann Intern Med 85:304–309

    Article  CAS  PubMed  Google Scholar 

  • Haworth JC, Hoogstraten J, Taylor H (1967) Thymic alymphoplasia. Arch Dis Child 42:40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffman JA, Hull WM, Dranoff G et al (1996) Pulmonary epithelial cell expression of Gm-CsF corrects the alveolar proteinosis in Gm-CsF-deficient mice. J Clin Invest 97:649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegami M, Ueda T, Hull W et al (1996) Surfactant metabolism in transgenic mice after granulocyte macrophage-colony stimulating factor ablation. Am J Physiol 270:l650–l658

    CAS  PubMed  Google Scholar 

  • Inoue Y, Trapnell BC, Tazawa R et al (2008) Characteristics of a large cohort of patients with autoimmune pulmonary alveolar proteinosis in Japan. Am J Respir Crit Care Med 177:752–762

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii H, Seymour JF (2014) Secondary pulmonary alveolar proteinosis complicating myelodysplastic syndrome results in worsening of prognosis: a retrospective cohort study in Japan. Secondary pulmonary alveolar proteinosis complicating myelodysplastic syndrome results in worsening of prognosis: a retrospective cohort study in Japan. BMC Pulm Med 14:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii H, Tazawa R, Kaneko C, Saraya T, Inoue Y, Hamano E, Kogure Y, Tomii K, Terada M, Takada T, Hojo M, Nishida A, Ichiwata T, Trapnell BC, Goto H, Nakata K (2011) Clinical features of secondary pulmonary alveolar proteinosis: pre-mortem cases in Japan. Eur Respir J 37:465–468

    Article  CAS  PubMed  Google Scholar 

  • Israel RH, Magnussen CR (1989) Are AIDS patients at risk for pulmonary alveolar proteinosis? Chest 96:641–642

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Tanaka N, Watanabe J et al (1999) Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med 190:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura T, Uchida K, Tanaka N (2000) Serological diagnosis of idiopathic pulmonary alveolar proteinosis. Am J Respir Crit Care Med 162(2 Pt 1):658–662

    Article  CAS  PubMed  Google Scholar 

  • Malcovati L, Porta GD, Pascutto C, Invernizzi R, Boni M, Travaglino E, Passamonti F, Arcaini L, Maffioli M, Bermasconi P, Lazzarino M, Cazzola M (2005) Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol 23:7594–7603

    Article  PubMed  Google Scholar 

  • Martinez-Moczygemba M, Doan ML, Elidemir O et al (2008) Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRalpha gene in the X chromosome pseudoautosomal region 1. J Exp Med 205:2711e16

    Article  Google Scholar 

  • Meager A, Wadhwa M, Bird C et al (1999) Spontaneously occurring neutralizing antibodies against granulocyte-macrophage colony-stimulating factor in patients with autoimmune disease. Immunology 97:526–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-Quernheim J, Schopf RE, Benes P et al (1987) A macrophage-suppressing 40-kd protein in a case of pulmonary alveolar proteinosis. Klin Wochenschr 65:893–897

    Article  CAS  PubMed  Google Scholar 

  • Nakata K et al (2006) Why does the autoantibody against granulocyte-macrophage colony-stimulating factor cause lesions only in the lung? Respirology 11(Suppl):S65–S69

    Article  PubMed  Google Scholar 

  • Nei T, Urano S et al (2013) Light chain (k/λ) ratio of GM-CSF autoantibodies is associated with disease severity in autoimmune pulmonary alveolar proteinosis. Clin Immunol 149(3):357–364

    Article  CAS  PubMed  Google Scholar 

  • Nishinakamura R, Wiler R, Dirksen U et al (1996) The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 beta c receptor-deficient mice is reversed by bone marrow transplantation. J Exp Med 183:2657–2662

    Article  CAS  PubMed  Google Scholar 

  • Nogee LM (2004) Alterations in SP-B and SP-C expression in neonatal lung disease. Annu Rev Physiol 66:601–623

    Article  CAS  PubMed  Google Scholar 

  • Nogee LM (2006) Genetics of pediatric interstitial lung disease. Curr Opin Pediatr 18:287–292

    Article  PubMed  Google Scholar 

  • Reed JA, Ikegami M, Cianciolo ER et al (1999) Aerosolized GM-CSF ameliorates pulmonary alveolar proteinosis in GM-CSF-deficient mice. Am J Physiol 276:l556–l563

    CAS  PubMed  Google Scholar 

  • Ricote M, Huang JT, Welch JS, Glass CK (1999) The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol 66:733–739

    CAS  PubMed  Google Scholar 

  • Robb L, Drinkwater CC, Metcalf D et al (1995) Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci USA 92:9565–9569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakagami T et al (2009) Human GM-CSF autoantibodies and reproduction of pulmonary alveolar proteinosis. N Engl J Med 361:2679–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakagami T, Beck D, Uchida K et al (2010) Patient-derived GM-CSF autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates. Am J Respir Crit Care Med 182:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour JF, Presneill JJ (2002) Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med 166:215–235

    Article  PubMed  Google Scholar 

  • Shibata Y, Berclaz PY, Chroneos ZC et al (2001) GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 15:557–567

    Article  CAS  PubMed  Google Scholar 

  • Somaschini M, Nogee LM, Sassi I et al (2007) Unexplained neonatal respiratory distress due to congenital surfactant deficiency. J Pediatr 150:649–653

    Article  PubMed  Google Scholar 

  • Stanley E, Lieschke GJ, Grail D et al (1994) Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 91:5592–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton JA, Sieger L, Wasserman K (1981) The immunoinhibitory activities of the lung lavage materials and sera from patients with pulmonary alveolar proteinosis (PAP). J Clin Lab Immunol 5:81–86

    CAS  PubMed  Google Scholar 

  • Suzuki T, Sakagami T, Rubin BK et al (2008) Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J Exp Med 205:2703–2710

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki T et al (2010) Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am J Respir Crit Care Med 182:1292–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T et al (2011) Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations. Eur Respir J 37:201–204

    Article  CAS  PubMed  Google Scholar 

  • Svenson M et al (1998) Antibody to granulocyte-macrophage colony-stimulating factor is a dominant anti-cytokine activity in human IgG preparations. Blood 91:2054–2061

    CAS  PubMed  Google Scholar 

  • Tanaka N, Watanabe J, Kitamura T et al (1999) Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macrophage colony stimulating factor. FEBS Lett 442:246–250

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T et al (2011) Adult-onset hereditary pulmonary alveolar proteinosis caused by a single-base deletion in CSF2RB. J Med Genet 48:205–209

    Article  PubMed  Google Scholar 

  • Tazawa R, Ito K, Ogi T, Ishii H, Sakagami T, Hashimoto A, Tanaka T, Akasaka K-I, Tohyama J, Nakata K (2014) Adult-onset hereditary pulmonary alveolar proteinosis caused by CSF2RA deletion [Publication Number: A1524]. ATS

    Google Scholar 

  • Tchou-Wong KM, Harkin TJ, Chi C, Bodkin M, Rom WN (1997) GM-CSF gene expression is normal but protein release is absent in a patient with pulmonary alveolar proteinosis. Am J Respir Crit Care Med 156:1999–2002

    Article  CAS  PubMed  Google Scholar 

  • Trapnell BC, Whitsett JA, Nakata K (2003) Pulmonary alveolar proteinosis. N Engl J Med 349:2527–2539

    Article  CAS  PubMed  Google Scholar 

  • Uchida K et al (2004) High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood 103:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Uchida K et al (2007) GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N Engl J Med 356:567–579

    Article  CAS  PubMed  Google Scholar 

  • Uchida K et al (2009) Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood 113:2547–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2013) Characterization of pathogenic human monoclonal autoantibodies against GM-CSF. Proc Natl Acad Sci USA 110:7832–7837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster JR Jr, Battifora H, Furey C et al (1980) Pulmonary alveolar proteinosis in two siblings with decreased immunoglobulin A. Am J Med 69:786–789

    Article  PubMed  Google Scholar 

  • Yoshida M, Ikegami M, Reed JA et al (2001) Gm-CsF regulates surfactant protein-A and lipid catabolism by alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 280:l379–l386

    CAS  PubMed  Google Scholar 

  • Yousem SA, Burke CM, Billingham ME (1985) Pathologic pulmonary alterations in long-term human heart-lung transplantation. Hum Pathol 16:911–923

    Article  CAS  PubMed  Google Scholar 

  • Zsengeller ZK, Reed JA, Bachurski CJ et al (1998) Adenovirus-mediated granulocyte-macrophage colony-stimulating factor improves lung pathology of pulmonary alveolar proteinosis in granulocyte-macrophage colonystimulating factor-deficient mice. Hum Gene Ther 9:2101–2109

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh Nakata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nakata, K., Tazawa, R. (2017). Pulmonary Alveolar Proteinosis: A Historic Perspective. In: Azuma, A., Schechter, M. (eds) Treatment of Cystic Fibrosis and Other Rare Lung Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0977-1_4

Download citation

Publish with us

Policies and ethics